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Abstract

Nanoscale drug delivery systems have transformed the landscape of chemotherapy by enabling targeted, controlled release of
therapeutics while minimizing systemic toxicity. This review focuses on recent advancesin polymeric nanoparticles and related
nanocarriers for targeted drug delivery, including novel formulations for fluoropyrimidine chemotherapies and pH-sensitive
delivery platforms. We discuss the design and engineering of polymeric nanoparticles that exploit the enhanced permeability
and retention effect for passive tumor targeting and surface modifications for active targeting. Innovative strategies such as
stimulus-responsive (especially pH-responsive) nanocarriers and co-delivery systems are highlighted for their ability to
improve drug bioavailability and efficacy. Preclinical validation and emerging clinical trial data demonstrate improved
therapeutic indices and reduced side effects for several nanomedicine candidates. Fluoropyrimidine-loaded nanocarriers show
promise in overcoming 5-fluorouracil’s pharmacokinetic challenges, enabling sustained release and tumor-selective delivery.
The review also addresses translational considerations, manufacturing, safety, and regulatory aspects, associated with bringing
these nanotechnologies from bench to bedside.

Keywords: Targeted drug delivery, polymeric nanoparticles, 5-fluorouracil, pH-sensitive nanocarriers, nanomedicine;
controlled release.
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*Corresponding Author preferentially accumulate in cancerous tissue via the
enhanced permeability and retention (EPR) effect [4,5]. In
addition, nanocarriers can be functionalized with targeting
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specific receptors, further enhancing selective drug
delivery [1]. Over the past few years, a wave of
nanoparticle-based chemotherapeutics has advanced
through clinical development, including several that have
reached human trials [6-8]. These platforms promise to
reduce off-target toxicity and overcome mechanisms of
drug resistance by controlling drug release profiles and
concentrating payloads at the disease site [9].

Introduction

Cancer chemotherapy has long been impeded by poor
tumor selectivity, dose-limiting toxicities, and drug
resistance.  Conventional  cytotoxic  agents like
fluoropyrimidines (e.g. 5-fluorouracil, 5-FU) damage
healthy tissues due to non-specific distribution, resulting
in serious side effects [1,2]. The need for more precise

Pol i icl fi i 1
delivery of anticancer drugs has catalyzed the olymeric nanoparticles, made  from biodegradable

polymers such as poly(lactic-co-glycolic acid) (PLGA),
poly(ethylene glycol) (PEG)-based block copolymers,
chitosan, and others, are at the forefront of this field [10].
They offer tunable size, surface properties, and drug
release kinetics, making them versatile carriers for a
variety of therapeutics. Recent research has focused on
“smart” polymeric NPs that respond to stimuli (pH,

development of novel drug delivery systems that can ferry
therapeutics directly to tumor sites, improving the
therapeutic index [1,3]. Nanoscale carriers, particularly
polymeric nanoparticles (NPs), have emerged as
promising vehicles to achieve this goal. These
nanomedicines exploit tumor pathophysiology (such as
leaky vasculature and poor lymphatic drainage) to
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enzymes, temperature) to trigger drug release only in
desired environments [11]. This is especially relevant for
solid tumors, which often have an acidic
microenvironment and elevated levels of certain enzymes
[12]. By designing pH-sensitive or enzyme-degradable
linkages in nanoparticle matrices, drugs
preferentially released in tumor tissue or intracellular
compartments, minimizing systemic exposure [13].
Likewise, advanced formulation techniques (e.g.
microfluidics, nanoprecipitation) have improved NP
uniformity and scalability, bringing these technologies
closer to clinical application [14].

In this review, we examine recent advances in nanoscale
targeted drug delivery systems, with an emphasis on
polymeric nanoparticles and related novel formulations.
We first discuss the design and functionalization of
polymeric NPs for targeted delivery, highlighting how
innovations in polymer chemistry and NP fabrication are
yielding carriers with improved drug loading, stability,
and targeting ability. We then focus on fluoropyrimidine
delivery platforms as a case study, since 5-FU remains a
cornerstone chemotherapeutic with known limitations
that nanotechnology is helping to address. Next, we
explore pH-sensitive and other stimulus-responsive
nanocarriers that achieve controlled release in response to
tumor-specific triggers. Throughout,
preclinical efficacy data and any clinical trial findings that
underscore the translational potential of these
approaches. Finally, we consider the challenges that
remain, including scale-up manufacturing, regulatory
hurdles, and ensuring safety, and provide perspective on
the future of targeted nanomedicine in oncology.

can be

we summarize

Polymeric Nanoparticles for Targeted Drug
Delivery

Polymeric nanoparticles (NPs) have gained prominence
due to their favorable pharmacokinetic and delivery
properties. Constructed from biocompatible polymers
(synthetic or natural), these NPs can encapsulate
therapeutic molecules and protect them from premature
degradation, while also enabling controlled and sustained
release [13,14]. Critically, polymeric NPs prolong the
circulation time of drugs, improve their stability in
biological fluids, and can be engineered to release
payloads in a time- or trigger-dependent manner [15]. By
mitigating rapid clearance and burst release, polymeric
NPs increase drug accumulation in target tissues and
reduce off-target exposure [16].

A major advantage of polymeric nanocarriers is their
flexibility in surface modification. Researchers have
conjugated various targeting moieties onto NP surfaces,
including monoclonal antibodies, peptides, aptamers, and
small molecules, to achieve active targeting of specific cell
types or receptors [17,18]. For example, nanoparticles
functionalized with folate or transferrin can exploit the
overexpression of folate or transferrin receptors on
certain cancer cells, leading to enhanced uptake by tumors
relative to normal cells [19,20]. Ligand-targeted NPs have

demonstrated  higher intracellular  delivery  of

(20]

chemotherapeutics in cells and improved
antitumor efficacy in animal models compared to
untargeted counterparts [21, 22]. Additionally, receptor-
based targeting strategies are particularly promising for
circumventing drug resistance, as many resistant tumor
phenotypes upregulate specific membrane receptors. A
recent review emphasized the utility of exploiting receptor
expression profiles to enhance therapeutic precision and
overcome resistance barriers [23].

Polymeric NPs can be formulated for different routes of
administration (intravenous, oral, intratumoral, etc.) and
tailored to the needs of various therapeutic contexts. In
oncology, IV-injected NPs passively home to tumors via
the EPR effect and can be “triggered” to release drugs in
response to the acidic pH or enzymatic milieu of tumor
tissue [24, 25]. For instance, polymeric micelles with pH-
labile bonds remain stable at physiological pH 7.4 but
rapidly release their drug cargo in the slightly acidic pH
~6.5 of interstitium or endosomes [26].
Dendrimers and nanogels represent other polymer-based
carriers that can swell or dissociate in response to pH or
temperature changes, enabling drug
unloading. These “smart” behaviors help concentrate the
therapeutic effect at the tumor while sparing normal
tissues.

In oncology applications, polymeric nanoparticles can be
engineered to accumulate in tumors (via passive EPR
effect or active ligand targeting) and release drugs in
response to tumor-specific triggers, thereby increasing
anti-tumor efficacy while reducing systemic toxicity [25,
27].

Common polymer choices for NP construction include
PLGA, polycaprolactone, PEGylated polymers,
naturally derived polymers like chitosan or alginate.
PLGA-based NPs, for example, have been widely studied
due to PLGA’s biodegradability and FDA-approved status;
drugs encapsulated in PLGA NPs often show sustained
release over days to weeks as the polymer matrix
gradually hydrolyzes [20,28]. Chitosan NPs carry innate
positive charges that facilitate interaction with negatively
charged cell membranes, enhancing cellular uptake.
Moreover, chitosan’s mucoadhesive properties make it
useful for transmucosal drug delivery (e.g. oral or

cancer

tumor

on-demand

and

intranasal routes) [29]. Recent innovations in polymer
chemistry have led to stimuli-responsive polymers, such
as poly(N-isopropylacrylamide) which is temperature-
sensitive, or polymers containing pH-cleavable linkers,
being incorporated into NP designs [30]. Multi-block
copolymers can combine hydrophobic and hydrophilic
segments to form self-assembling micelles that carry
hydrophobic drugs in their core, shielded by a hydrophilic
shell (often PEG) that prolongs circulation [31, 32].

Another impactful trend is the co-delivery of multiple
therapeutic agents using a single nanoparticle platform. By
encapsulating drug combinations, nanocarriers can ensure
that synergistic agents (e.g. a chemotherapeutic and an
MDR inhibitor, or two chemo drugs with complementary
actions) are delivered to the tumor at the same time and at
optimal ratios [33]. This co-loading strategy can enhance
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therapeutic efficacy and help prevent drug resistance. For
instance, polymeric NPs co-encapsulating doxorubicin and
an siRNA against drug-resistance genes have shown the
ability to reverse tumor resistance and induce tumor
regressions in models [34, 35]. Similarly, 5-FU has been
co-delivered with other drugs like paclitaxel or everolimus
in nanoparticle formulations to yield higher anticancer
effects than either alone [33, 36]. Mohammadi Arvejeh et
al. (2025) recently developed an injectable hydrogel
embedding mesoporous silica nanoparticles for co-
delivery of 5-FU and the mTOR inhibitor everolimus,
achieving synergistic inhibition of breast tumors in mice
[37]. The nanocomposite hydrogel provided localized, pH-
responsive release of both drugs and significantly reduced
tumor size and lung metastases compared to monotherapy
controls [38]. Such combination nanotherapies illustrate
the potential of polymeric systems to not only target
tumors but also intelligently deploy multiple interventions
against cancer cells. Additionally, epigenetic modulators
like miRNAs are increasingly recognized as drivers of
resistance. For example, miRNA-221-5p has been shown
to regulate epigenetic pathways that promote
chemoresistance in ovarian cancer, representing a
promising target for RNA-loaded or miRNA-responsive
nanocarrier systems [39]. Recent work demonstrates that
inhibiting CHK1 in ovarian cancer induces PARylation and
NAD* depletion, combined with PARG
inhibition, it leads to replication catastrophe and
metabolic stress, offering a novel approach to overcome
drug resistance via synthetic lethality [40].

Polymeric nanoparticles have progressed from benchtop
research to clinical evaluation. Several polymer-based
nanomedicines are in clinical trials, and a few have
attained regulatory approval for cancer therapy. One
example is CRLX101, a cyclodextrin-polymer conjugate
carrying camptothecin, which advanced to phase II trials
in solid tumors [41,42]. Polymeric micelle formulations of
paclitaxel (e.g. Genexol-PM) have been approved in some
regions, demonstrating reduced
conventional cremophor-formulated paclitaxel [43]. These
successes underscore that polymeric NP systems can be
manufactured under Good Manufacturing Practice and
meet

and when

toxicities  versus

safety criteria for human wuse. Nonetheless,
challenges remain in ensuring batch-to-batch consistency,
scalability of production, and thorough characterization of
these complex nanomaterials [44]. The pharmacokinetics
and biodistribution of polymeric NPs can also be
influenced by their physicochemical properties (size,
charge, surface hydrophilicity), so careful optimization is
required to strike a balance between stability in blood and
efficient payload release in targets [45].

In summary, polymeric nanoparticles provide a versatile
platform for targeted drug delivery. By appropriate
selection or design of polymers, surface functionalization,
and incorporation of stimulus-responsive features, these
nanocarriers achieve improved tumor targeting and
therapeutic outcomes in preclinical models. The next
sections delve deeper into specific applications, notably
the delivery of fluoropyrimidine chemotherapeutics and

[21]

the use of pH-sensitive formulations, which exemplify the
translational progress in this field.

Fluoropyrimidine Delivery
Nanocarriers for 5-FU and Analogues
Fluoropyrimidines such as 5-fluorouracil (5-FU) and its
prodrugs (capecitabine, tegafur) are mainstay treatments
for malignancies including colorectal, gastrointestinal,
breast, and head-neck cancers. 5-FU has
notoriously problematic pharmacokinetics: it has a very
short plasma half-life (10-20 minutes), is rapidly
metabolized, and can cause severe off-target toxicities in
the gastrointestinal tract and bone marrow [46,47].
Traditional 5-FU regimens often require continuous
infusion or high-dose bolus administration, which increase
the risk of mucositis, myelosuppression, and hand-foot
syndrome [46,47]. Nanotechnology offers strategies to
reformulate fluoropyrimidines, improving drug targeting
tumors and reducing systemic exposure [48].

Multiple nano-delivery systems for 5-FU have been
explored in recent years [46]. These include lipid-based
nanoparticles (e.g. liposomes, solid lipid NPs), polymeric
NPs (both non-responsive and stimulus-responsive types),
inorganic nanocarriers (such as mesoporous silica or gold
nanoparticles), and nanoscale polymer-drug conjugates
[49,50]. Each approach aims to overcome the limitations
of 5-FU by increasing its stability and concentrating its
action in cancer cells. For instance, 5-FU encapsulated in
PEGylated liposomes has shown prolonged circulation and
enhanced tumor uptake in animal models, translating to
greater antitumor efficacy than free 5-FU [51]. Polymeric
NPs made of PLGA or poly(alkylcyanoacrylate) have been
loaded with 5-FU to achieve sustained drug release over
several days, maintaining therapeutic drug levels in
tumors while sparing normal tissues [52, 53]. Notably,
some polymeric formulations are designed to release 5-FU
preferentially in the acidic microenvironment of tumors or
inside cancer cells’ endosomes (pH ~5-6), thus
minimizing drug release in blood (pH 7.4) [26].

One innovative formulation reported in 2024 is thiolated
chitosan nanoparticles modified for active targeting of 5-
FU to cancer cells [54]. Anjum et al. synthesized chitosan
NPs crosslinked with a thiol reagent to improve their
mucoadhesiveness and stability, then coated the NPs with
hyaluronic acid (HA) to target CD44, a receptor
overexpressed on many cancer cells [54]. The resulting
HA-coated 5-FU nanoparticles had a sub-300 nm size and
positive zeta potential, facilitating efficient uptake by
CD44+ triple-negative breast cancer cells while sparing
[55]. targeted NPs
demonstrated significantly higher cytotoxicity against
breast cancer cells compared to free 5-FU, owing to
enhanced cellular internalization [56, 57]. They also
exhibited a controlled release profile (following diffusion-
controlled kinetics) that prolonged drug action [58, 59].

Systems:

However,

normal cells In vitro, these

This design, combining a biodegradable polymer
(chitosan), a targeting ligand (HA), and thiol-mediated
mucoadhesion, exemplifies the sophisticated

multifunctional nanoparticles now being developed for
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fluoropyrimidine delivery. Such systems aim to increase
tumor-specific drug delivery and reduce the dose of 5-FU
needed, thereby mitigating side effects [60, 61].

Another area of progress is colon-targeted delivery of 5-
FU for colorectal cancer therapy. Because 5-FU causes
dose-limiting GI toxicity when given systemically,
formulating it for local release in the colon can improve
efficacy against colonic tumors while lowering systemic
exposure [62]. Researchers have designed pH-responsive
oral formulations that protect 5-FU as it passes through
the stomach and small intestine, then release it upon
reaching the higher pH environment of the colon [63]. For
example, a 2023 study utilized cross-linked mastic gum as
an enteric matrix for 5-FU, achieving significant drug
release only at colonic pH and demonstrating enhanced
tumor suppression in a mouse colon cancer model [64].
Similarly, pH-sensitive polymer coatings (like Eudragit S,
which dissolves at pH > 7) have been applied to 5-FU-
loaded nanoparticles or tablets to selectively deliver the
drug to the distal gut [65]. These strategies increase local
drug concentration at the tumor site in the colon,
improving therapeutic outcomes in preclinical studies of
colorectal cancer while causing fewer systemic toxic
effects [66].

Co-delivery strategies are also being pursued to enhance
the efficacy of 5-FU. One approach is combining 5-FU with
agents that modulate molecular pathways in cancer cells.
A recent example is the co-encapsulation of 5-FU with
small interfering RNAs (siRNA) or microRNA mimics that
target oncogenes [67]. Gao et al. (2022) developed a layer-
by-layer liposomal system carrying 5-FU along with siRNA
against KRAS and a tumor-suppressor miRNA, aiming to
tackle colorectal cancer on multiple fronts [68, 69]. The
multilayer liposomes delivered their cargo preferentially
to colorectal tumor tissues in mice, resulting in marked
tumor growth inhibition by synergistically silencing
oncogenic KRAS and exerting 5-FU’s cytotoxic effects [70].
Another example is co-delivery of 5-FU with everolimus
(an mTOR inhibitor) in the chitosan-silica nanohydrogel
mentioned earlier [71]. By simultaneously blocking the
mTOR pathway and incorporating 5-FU’s antimetabolite
action, the combination induced higher cancer cell
apoptosis and tumor regression than either agent alone
[72-74]. These
demonstrate how nanocarriers can coordinate multiple
therapeutic modalities, an especially valuable feature for
managing cancers that rapidly develop drug resistance
are used [75, 76].
lymphoblastic leukemia-derived sequence-1 (LYL1) has
emerged as a novel oncogenic driver associated with
ovarian cancer progression and metastasis, highlighting a
potential molecular target for RNAi or gene-editing-based

combination nanoparticle therapies

when single agents Recently,

nanocarrier development [77].

Collectively, nano-delivery systems for fluoropyrimidines
addressing  the 5-FU
chemotherapy. Through encapsulation and controlled
release, they prolong the drug’s presence in the
therapeutic window and reduce peak systemic
concentrations that toxicity. Tumor-targeted

are classic drawbacks of

cause

(22]

delivery via passive and active mechanisms increases drug
accumulation at the tumor site, enhancing anti-tumor
efficacy even in 5-FU-resistant cancer cell lines [78]. Many
5-FU nanocarriers also allow for dose reductions while
achieving the same or greater tumor suppression, as the
nanoformulation’s efficiency compensates for lower drug
amounts [79, 80]. This could translate to fewer side effects
for patients. Indeed, initial animal toxicology studies of 5-
FU nanoparticles show reduced bone marrow and GI
toxicity compared to equivalent doses of free 5-FU [81,
82]. Some formulations, such as SillaJen’sPexa-Vec (an
oncolytic vaccinia virus delivering a GM-CSF gene
alongside a suicide gene to complement 5-FU therapy), are
even entering clinical trials, reflecting a convergence of
viral and nanoparticle delivery approaches to maximize 5-
FU’s therapeutic benefit [83]. The use of viral vectors to
deliver immune-modulating cytokines such as interleukin-
2 has shown considerable promise in enhancing anti-
tumor immunity. Notably, recent studies demonstrate that
engineered viral platforms can sustainably express IL-2
within the tumor microenvironment, promoting cytotoxic
T-cell activation and improving immunotherapy outcomes
[84, 85]. While no 5-FU nanoformulation has yet achieved
FDA approval, the pipeline is rich with candidates,
indicating that fluoropyrimidine chemotherapy may soon
be administered in smarter, safer ways thanks to
nanotechnology.

pH-Sensitive and Stimuli-Responsive Delivery
Systems

One of the most exciting areas in targeted drug delivery is
the development of stimuli-responsivenanocarriers,
systems that remain inert during circulation but respond
to specific triggers in the target tissue to release their
payload. Among these, pH-sensitive delivery systems have
garnered particular interest in cancer therapy. Solid
tumors typically exhibit an acidic microenvironment (pH
~6.5-7.0 in interstitial fluid) due to hypoxia and high
glycolytic activity, in contrast to normal blood and tissue
pH of ~7.4 [26,86]. Furthermore, within tumor cells, endo-
lysosomal compartments are even more acidic (pH 5-6).
pH-responsive nanocarriers exploit these differences: they
are engineered to be stable at physiological pH but to
undergo physicochemical changes in acidic conditions that
trigger drug release [87, 88].

Several mechanisms can impart pH sensitivity to a
nanocarrier. One approach is incorporating acid-labile
bonds (such as hydrazone, Schiff-base, or cis-aconityl
linkages) that cleave in acidic environments. For example,
doxorubicin has been conjugated to polymers via
hydrazone bonds that remain intact at pH 7.4 but
hydrolyze at pH5-6, ensuring the drug is released
predominantly in acidic endosomes of cancer cells [26,89].
Another strategy is using pH-responsive polymer coatings
that swell or solubilize in acidic pH. Polymers containing
groups (like poly(B-amino esters), or
polyhistidine) can be solid and collapse at neutral pH, but
protonation in an acidic milieu causes them to become
hydrophilic or disrupt intermolecular interactions, leading

ionizable
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to nanoparticle swelling and drug diffusion out [87,89].
For instance, poly(L-histidine)-based micelles
disassemble as the imidazole groups protonate below
pH 6.5, releasing the drug load [90]. Similarly, Eudragit or
poly(ortho ester) coatings can be applied to NP surfaces to
prevent drug leakage at pH 7.4, then degrade and open up
in acidic conditions [91]. Additionally, rationally designed
small benzofuran-piperazine
derivatives have exhibited potent anticancer activity and
represent attractive candidates for encapsulation in
polymeric or lipid-based nanoparticles to enhance tumor-
targeted bioavailability and minimize systemic exposure
[92].

Physical dissociation of nanoparticles in low pH is a
commonly employed design. In one system, polymeric
micelles constructed from block copolymers were stable
in blood, but upon entering the acidic tumor tissue, the
increased protonation caused electrostatic repulsion that
burst the micelles, dumping the drug locally [93]. This
“pH-triggered explosion” effectively concentrates drug
release where it is needed. By leveraging the pH gradients
between healthy and tumor tissue (as well as between
extracellular and intracellular compartments), such
systems significantly enhance the precision of drug
deployment.

Beyond pH, other stimuli have been harnessed in
nanocarrier design. Enzyme-responsive nanoparticles
capitalize on overexpressed enzymes in the tumor milieu
(e.g. matrix metalloproteinases, cathepsins) to cleave
peptide linkers and release drugs at the tumor site [94,95].
Redox-responsive carriers use disulfide bonds that break
in the reducing environment of the cytosol (high
glutathione levels in cancer cells), triggering intracellular
drug release [96]. Thermo-responsive liposomes (e.g. low-
temp sensitive liposomes) can release contents upon mild
hyperthermia (~42 °C) applied to tumor regions. Magnetic
and ultrasound-triggered nanocarriers are also being
investigated: for example, magnetic nanoparticles that
heat up under an alternating magnetic field to induce drug
release, or acoustically sensitive liposomes that rupture
upon ultrasound exposure [97,98]. While these external
stimuli systems require specialized equipment, pH and
enzyme triggers are autonomous and take advantage of

will

molecules such as

intrinsic tumor characteristics.

A concrete example of a pH-sensitive system is the
“nanogel” - a hydrogel nanoparticle that can load drugs
and then shrink or swell in response to pH changes.
Nanogels made of crosslinked polymers like poly(N-
isopropylacrylamide-co-acrylic acid) remain collapsed at
bloodstream pH, but in acidic tissue they absorb water and
expand, releasing the encapsulated drug [99]. Importantly,
by integrating targeting ligands into such nanogels,
researchers have achieved dual-function systems that first
home to cancer cells (via ligand-receptor binding) and
then unload the drug intracellularly upon sensing the low
pH in endosomes(100). This multi-stimuli approach was
demonstrated by a nanogel that responded to both
temperature and pH, the polymer backbone provided
temperature sensitivity, and pendant catechol groups

(23]

were cleaved in acidic conditions, resulting in highly
controlled drug release with minimal premature leakage
[101,102].

The relevance of pH-sensitive delivery is
exemplified by formulations improved
chemotherapy for solid tumors. Doxorubicin encapsulated
in pH-responsive polymeric micelles (known as pmPDOX)
showed markedly enhanced tumor penetration and
antitumor activity in models of metastatic cancer, versus
non-pH-responsive liposomal doxorubicin [103]. Another
example is a pH-activated polymer-drug conjugate of
paclitaxel: it remained inactive in circulation, but upon
accumulating in the acidic tumor, the hydrazone linkers
hydrolyzed to release active paclitaxel, yielding greater
tumor growth inhibition in mice and reduced systemic
toxicity compared to standard paclitaxel [104]. Some of
these pH-sensitive systems have entered -early-phase
clinical trials, particularly in the form of polymeric
micelles or polymer conjugates, and initial results indicate
favorable safety and drug release profiles in patients with
advanced tumors [105].Among recent developments, the
nanoscale polymeric formulation CF10 has demonstrated
enhanced therapeutic efficacy and reduced systemic
toxicity in a preclinical rat model of colorectal cancer liver
metastasis, highlighting its potential as a next-generation
fluoropyrimidine delivery platform [106-108].

It's worth noting that stimulus-responsive delivery is not
limited to cancer. Similar principles are being applied to
inflammatory diseases (where inflamed tissue can be
slightly acidic and rich in proteases) and infection sites
(some bacteria create acidic niches) [109,110]. However,
oncology remains the primary focus, given the pressing
need to target chemotherapeutics more effectively.Overall,
pH-sensitive and other stimuli-responsive nanocarriers
represent a leap forward in the “intelligence” of drug
delivery systems. By programming
responsiveness into the carrier, these systems act almost
like a smart device, carrying the drug through the body,
sensing when they have arrived at the target, and then
executing the drug release precisely at that site [111]. This
level of control can drastically improve therapeutic
outcomes, as evidenced by higher response rates and
complete tumor regressions in some preclinical models

clinical
aiming at

environmental

using smart nanoparticles [112]. As materials science and
bioengineering continue to innovate on stimulus-sensitive
polymers, we anticipate even more refined control
mechanisms (for example, Boolean logic gates that require
multiple stimuli concurrently) that could further minimize
off-target effects [113,114]. The challenge moving forward
will be translating these complex systems into
manufacturable, regulatory-approved products. Ensuring
stability, reproducibility, and safety of stimuli-responsive
nanocarriers in humans will be paramount. Nonetheless,
the progress to date clearly indicates that in situ drug
activation via tumor-specific triggers can be a game-
changer in cancer therapy, aligning treatment potency

where it's needed and sparing healthy cells [115,116].
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Clinical Translation and Outlook
The translational pathway for novel nanomedicines
involves demonstrating advantages in preclinical efficacy,
acceptable safety profiles, and scalable manufacturing.
Many of the nanoscale delivery systems discussed have
shown striking improvements in therapeutic index in
animal models. For instance, 5-FU nanocarriers achieved
equivalent tumor suppression at a fraction of the dose
required for free 5-FU, with reduced toxicity [117]. pH-
sensitive doxorubicin micelles eradicated tumors in mice
that were resistant to standard chemotherapy [26]. These
encouraging results have propelled several candidates
into clinical trials. It is notable that the first FDA-approved
nanodrugs (e.g. liposomal doxorubicin, albumin-bound
paclitaxel) provided proof-of-concept that nanotechnology
can improve patient outcomes by reducing toxicity
[118,119]. Building on that foundation, polymeric and
stimuli-responsive systems are now vying to be the next
generation of approved nanotherapies.

One important consideration is safety and immunogenicity
of nanoparticle carriers. Polymeric NPs are generally
designed from biocompatible materials that degrade into
nontoxic byproducts (e.g. PLGA degrades to lactic and
glycolic acid, which enter metabolic pathways) [120]. Still,
careful toxicology studies are needed to ensure no
unexpected organ accumulation or immune reactions
[121]. The surface properties of NPs strongly influence
their interactions with the immune system. “Stealth” NPs
coated with PEG tend to evade rapid clearance by
phagocytes, prolonging circulation, but repeated dosing of
PEGylated NPs can sometimes induce anti-PEG antibodies.
So far, most polymeric NP systems have shown acceptable
immunological profiles in early studies, but ongoing
vigilance is warranted [122,123]. Drug-induced
hypersensitivity reactions, such as DRESS syndrome
associated with sulfasalazine, underscore the critical need
for designing delivery systems that minimize systemic
immunogenicity and off-target exposure [124-126]. In
addition, immune evasion mechanisms, particularly in
tumors exhibiting high cellular plasticity such as non-
small cell lung cancer, further contribute to therapeutic
resistance. Recent evidence suggests that T and NK cell
escape plays a central role in immunotherapy failure,
necessitating delivery strategies that also engage the
tumor immune microenvironment [127].

Another translational hurdle is scalable manufacturing
and Unlike
nanoparticles are complex heterogeneous structures.
Batch consistency must be rigorously controlled for
particle size, drug loading, release rate, and purity (e.g.
removal of free drug or residual solvents). Advances in
microfluidic
production are helping achieve more uniform batches
[128]. Regulatory agencies have also provided guidance on
characterization techniques (DLS for size distribution,
electron microscopy for morphology, HPLC for drug
content, etc.). Formulation stability during storage is
another issue, some nanoparticle formulations may
aggregate or precipitate time, necessitating

characterization. small molecules,

synthesis and automated nanoparticle

over

[24]

lyophilized forms that can be reconstituted before use.
this by developing
lyoprotectant strategies and optimizing storage conditions
(e.g. storing at 4 °C, protecting from light, etc.) [129].
Indeed, one of the polymeric micelle products in trials is
supplied as a freeze-dried powder to ensure long shelf-life,
with the end-user (pharmacist) rehydrating it in saline
prior to administration [130].
From a clinical standpoint,
treatment

Researchers have addressed

the integration of
nanomedicines regimens
consideration of dosing, scheduling, and potential
combination with other therapies. Because nanocarriers
alter the pharmacokinetics of drugs, clinicians may need to
adjust dosing schedules (for example, an NP providing
sustained release might be given less frequently than the
free drug) [131]. Moreover, nanoparticles often have
different tissue distribution - for instance, they may
penetrate tumors better but cross the blood-brain barrier
poorly (or vice versa if designed for CNS targeting)(132).
Understanding these differences is key to positioning
nanomedicines appropriately. The good news is that
several nanoformulations have entered oncology practice
(e.g. liposomal irinotecan for pancreatic
nanoparticle albumin paclitaxel for breast cancer), paving
the way for acceptance of new nano-delivery systems by
oncologists [133,134] Emerging molecular diagnostics are
also shaping posttreatment strategies. For instance, HPV-
HR DNA testing has shown potential as a non-invasive
alternative to PET/CT imaging for cancer surveillance,
aiding timely therapeutic decisions [135,136]. Effective
implementation of novel drug delivery systems in hospital
settings also requires attention to patient-centered
factors, including health literacy. A recent prospective
pilot study emphasized the importance of health literacy
screening in gynecologic oncology patients to improve
therapeutic engagement and outcomes [137].

Looking ahead, the field of targeted drug delivery is poised
with cutting-edge
Combination of nanocarriers with immunotherapy is a
promising example, nanoparticle
formulations that deliver a chemotherapeutic along with
an immune adjuvant can not only kill tumor cells but also
stimulate an

into requires

cancer,

to intersect other modalities.

frontier. For

anticancer immune response. Some
researchers have loaded checkpoint blockade antibodies
onto nanoparticles together with chemo drugs, creating a
single platform that both debulks the tumor and
checkpoints in the

There is interest

modulates immune tumor

microenvironment. also
nanoparticles to improve cell therapies: e.g. nanoparticle
“backpacks” on T-cells that slowly release cytokines to
enhance the T-cells’ activity once they reach the tumor.In

addition to formulating nano-antibiotics that minimize

in using

resistance  and
implementation must also address real-world challenges
such as ineffective IV-to-oral transition protocols and
treatment inconsistencies in infectious diseases. For
instance, prospective evaluations from tertiary care
settings have revealed substantial gaps in inpatient versus

outpatient strategies highlighted

systemic  toxicity, hospital-based

antibiotic and
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operational delays in oral conversion for eligible patients
[138, 139]. Such findings underscore the necessity of
aligning advanced drug delivery with
antimicrobial stewardship models supported by clinical
pharmacists.

Finally, cost and accessibility will influence the clinical
uptake of these technologies. While nanoformulations can
be more complex and expensive to produce than
traditional drugs, their potential to improve outcomes
(and possibly enable cures in cases where current therapy
fails) can justify the investment [140]. Health-economic
analyses are beginning to consider whether the reduced
side-effect management costs and improved patient
quality-of-life  from  nanomedicines offset their
manufacturing costs. As more nanodrugs hopefully gain
approval, competition and economies of scale may also
drive costs down [141].

In conclusion, nanoscale and targeted drug delivery
systems represent a transformative approach in
pharmacotherapy. Polymeric nanoparticles,
fluoropyrimidinenanoformulations, and pH-sensitive
carriers have shown the ability to address long-standing
challenges in chemotherapy by enhancing drug targeting
and retention at disease sites. The clinical translation of
these technologies is underway, supported by a strong
foundation of  preclinical
interdisciplinary collaboration among chemists, biologists,
engineers, and clinicians will be essential to bring these
sophisticated delivery systems from the laboratory to
routine patient care. If successful, patients will experience
more effective treatments with fewer side effects, fulfilling
the promise of “right drug, right place, right time” that
targeted drug delivery embodies.

innovations

evidence. Continued

Conclusion

Recent advances in nanotechnology have enabled the
design of smart drug delivery systems that significantly
improve the precision and efficacy of chemotherapy.
Polymeric nanoparticles offer customizable platforms to
carry and release therapeutics in a controlled manner,
reducing toxicity and overcoming biological barriers.
Fluoropyrimidine chemotherapies like 5-FU, which are
limited by rapid clearance and systemic side effects, have
been reformulated into nanoparticle systems that prolong
drug circulation and selectively release drug at tumor sites
- achieving better anti-cancer effects in preclinical models
with toxicity [142, 143]. Stimuli-responsive
nanocarriers, particularly those sensitive to pH, exemplify
how the tumor microenvironment can be leveraged to
trigger drug release exactly where needed [26]. These
intelligent systems remain stable during blood transit and
then unleash potent doses upon encountering the acidic or
enzyme-rich conditions of tumors, thereby maximizing
tumor cell kill while sparing healthy tissue.

As evidenced by multiple candidates entering clinical
trials, the field is moving steadily toward clinical
implementation of these novel delivery strategies. The
translation is supported by advances in manufacturing
techniques and a deeper understanding of nano-bio

lower

[25]

interactions that inform safety evaluations. Early-phase
trials of nanoparticle-based drugs have generally shown
that these systems can be administered safely to patients,
with pharmacokinetic profiles consistent with the long-
circulating, tumor-targeting behavior observed in animal
studies [144]. Challenges remain, including ensuring
regulatory compliance in production, managing potential
immunogenicity of nanoparticle components,
educating clinicians about the unique handling and dosing
of nanomedicines. However, the trajectory is clear:
nanoscale targeted delivery is on the cusp of delivering
tangible benefits to patients, making chemotherapy more
effective and tolerable.

In conclusion, the progress in polymeric nanoparticles,
fluoropyrimidine nano-delivery, and pH-responsive
systems heralds a new era of cancer therapy where
treatment is not only defined by the drug’s potency but
equally by the sophistication of its delivery. By refining
how and where drugs act within the body, these
technologies fulfill a central goal of precision medicine.
Ongoing research and clinical collaboration
undoubtedly expand the repertoire of diseases that can be
tackled by targeted nanomedicine, potentially extending
beyond oncology to treat infections, metabolic conditions,
and others with similar precision. The coming years are
likely to witness some of these advanced drug delivery
systems reaching regulatory approval and becoming part
of standard therapeutic regimens, ultimately improving
patient outcomes and quality of life.
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