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Abstract 

Nanoscale drug delivery systems have transformed the landscape of chemotherapy by enabling targeted, controlled release of 

therapeutics while minimizing systemic toxicity. This review focuses on recent advancesin polymeric nanoparticles and related 

nanocarriers for targeted drug delivery, including novel formulations for fluoropyrimidine chemotherapies and pH-sensitive 

delivery platforms. We discuss the design and engineering of polymeric nanoparticles that exploit the enhanced permeability 

and retention effect for passive tumor targeting and surface modifications for active targeting. Innovative strategies such as 

stimulus-responsive (especially pH-responsive) nanocarriers and co-delivery systems are highlighted for their ability to 

improve drug bioavailability and efficacy. Preclinical validation and emerging clinical trial data demonstrate improved 

therapeutic indices and reduced side effects for several nanomedicine candidates. Fluoropyrimidine-loaded nanocarriers show 

promise in overcoming 5-fluorouracil’s pharmacokinetic challenges, enabling sustained release and tumor-selective delivery. 

The review also addresses translational considerations, manufacturing, safety, and regulatory aspects, associated with bringing 

these nanotechnologies from bench to bedside.  

Keywords: Targeted drug delivery, polymeric nanoparticles, 5-fluorouracil, pH-sensitive nanocarriers, nanomedicine; 

controlled release. 

 

 

Introduction 

Cancer chemotherapy has long been impeded by poor 

tumor selectivity, dose-limiting toxicities, and drug 

resistance. Conventional cytotoxic agents like 

fluoropyrimidines (e.g. 5-fluorouracil, 5-FU) damage 

healthy tissues due to non-specific distribution, resulting 

in serious side effects [1,2]. The need for more precise 

delivery of anticancer drugs has catalyzed the 

development of novel drug delivery systems that can ferry 

therapeutics directly to tumor sites, improving the 

therapeutic index [1,3]. Nanoscale carriers, particularly 

polymeric nanoparticles (NPs), have emerged as 

promising vehicles to achieve this goal. These 

nanomedicines exploit tumor pathophysiology (such as 

leaky vasculature and poor lymphatic drainage) to 

preferentially accumulate in cancerous tissue via the 

enhanced permeability and retention (EPR) effect [4,5]. In 

addition, nanocarriers can be functionalized with targeting 

ligands (antibodies, peptides, etc.) to actively bind tumor-

specific receptors, further enhancing selective drug 

delivery [1]. Over the past few years, a wave of 

nanoparticle-based chemotherapeutics has advanced 

through clinical development, including several that have 

reached human trials [6–8]. These platforms promise to 

reduce off-target toxicity and overcome mechanisms of 

drug resistance by controlling drug release profiles and 

concentrating payloads at the disease site [9]. 

Polymeric nanoparticles, made from biodegradable 

polymers such as poly(lactic-co-glycolic acid) (PLGA), 

poly(ethylene glycol) (PEG)-based block copolymers, 

chitosan, and others, are at the forefront of this field [10]. 

They offer tunable size, surface properties, and drug 

release kinetics, making them versatile carriers for a 

variety of therapeutics. Recent research has focused on 

“smart” polymeric NPs that respond to stimuli (pH, 
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enzymes, temperature) to trigger drug release only in 

desired environments [11]. This is especially relevant for 

solid tumors, which often have an acidic 

microenvironment and elevated levels of certain enzymes 

[12]. By designing pH-sensitive or enzyme-degradable 

linkages in nanoparticle matrices, drugs can be 

preferentially released in tumor tissue or intracellular 

compartments, minimizing systemic exposure [13]. 

Likewise, advanced formulation techniques (e.g. 

microfluidics, nanoprecipitation) have improved NP 

uniformity and scalability, bringing these technologies 

closer to clinical application [14]. 

In this review, we examine recent advances in nanoscale 

targeted drug delivery systems, with an emphasis on 

polymeric nanoparticles and related novel formulations. 

We first discuss the design and functionalization of 

polymeric NPs for targeted delivery, highlighting how 

innovations in polymer chemistry and NP fabrication are 

yielding carriers with improved drug loading, stability, 

and targeting ability. We then focus on fluoropyrimidine 

delivery platforms as a case study, since 5-FU remains a 

cornerstone chemotherapeutic with known limitations 

that nanotechnology is helping to address. Next, we 

explore pH-sensitive and other stimulus-responsive 

nanocarriers that achieve controlled release in response to 

tumor-specific triggers. Throughout, we summarize 

preclinical efficacy data and any clinical trial findings that 

underscore the translational potential of these 

approaches. Finally, we consider the challenges that 

remain, including scale-up manufacturing, regulatory 

hurdles, and ensuring safety, and provide perspective on 

the future of targeted nanomedicine in oncology. 

Polymeric Nanoparticles for Targeted Drug 

Delivery 

Polymeric nanoparticles (NPs) have gained prominence 

due to their favorable pharmacokinetic and delivery 

properties. Constructed from biocompatible polymers 

(synthetic or natural), these NPs can encapsulate 

therapeutic molecules and protect them from premature 

degradation, while also enabling controlled and sustained 

release [13,14]. Critically, polymeric NPs prolong the 

circulation time of drugs, improve their stability in 

biological fluids, and can be engineered to release 

payloads in a time- or trigger-dependent manner [15]. By 

mitigating rapid clearance and burst release, polymeric 

NPs increase drug accumulation in target tissues and 

reduce off-target exposure [16]. 

A major advantage of polymeric nanocarriers is their 

flexibility in surface modification. Researchers have 

conjugated various targeting moieties onto NP surfaces, 

including monoclonal antibodies, peptides, aptamers, and 

small molecules, to achieve active targeting of specific cell 

types or receptors [17,18]. For example, nanoparticles 

functionalized with folate or transferrin can exploit the 

overexpression of folate or transferrin receptors on 

certain cancer cells, leading to enhanced uptake by tumors 

relative to normal cells [19,20]. Ligand-targeted NPs have 

demonstrated higher intracellular delivery of 

chemotherapeutics in cancer cells and improved 

antitumor efficacy in animal models compared to 

untargeted counterparts [21, 22]. Additionally, receptor-

based targeting strategies are particularly promising for 

circumventing drug resistance, as many resistant tumor 

phenotypes upregulate specific membrane receptors. A 

recent review emphasized the utility of exploiting receptor 

expression profiles to enhance therapeutic precision and 

overcome resistance barriers  [23]. 

Polymeric NPs can be formulated for different routes of 

administration (intravenous, oral, intratumoral, etc.) and 

tailored to the needs of various therapeutic contexts. In 

oncology, IV-injected NPs passively home to tumors via 

the EPR effect and can be “triggered” to release drugs in 

response to the acidic pH or enzymatic milieu of tumor 

tissue [24, 25]. For instance, polymeric micelles with pH-

labile bonds remain stable at physiological pH 7.4 but 

rapidly release their drug cargo in the slightly acidic pH 

~6.5 of tumor interstitium or endosomes [26]. 

Dendrimers and nanogels represent other polymer-based 

carriers that can swell or dissociate in response to pH or 

temperature changes, enabling on-demand drug 

unloading. These “smart” behaviors help concentrate the 

therapeutic effect at the tumor while sparing normal 

tissues. 

In oncology applications, polymeric nanoparticles can be 

engineered to accumulate in tumors (via passive EPR 

effect or active ligand targeting) and release drugs in 

response to tumor-specific triggers, thereby increasing 

anti-tumor efficacy while reducing systemic toxicity [25, 

27]. 

Common polymer choices for NP construction include 

PLGA, polycaprolactone, PEGylated polymers, and 

naturally derived polymers like chitosan or alginate. 

PLGA-based NPs, for example, have been widely studied 

due to PLGA’s biodegradability and FDA-approved status; 

drugs encapsulated in PLGA NPs often show sustained 

release over days to weeks as the polymer matrix 

gradually hydrolyzes [20,28]. Chitosan NPs carry innate 

positive charges that facilitate interaction with negatively 

charged cell membranes, enhancing cellular uptake. 

Moreover, chitosan’s mucoadhesive properties make it 

useful for transmucosal drug delivery (e.g. oral or 

intranasal routes) [29]. Recent innovations in polymer 

chemistry have led to stimuli-responsive polymers, such 

as poly(N-isopropylacrylamide) which is temperature-

sensitive, or polymers containing pH-cleavable linkers, 

being incorporated into NP designs [30]. Multi-block 

copolymers can combine hydrophobic and hydrophilic 

segments to form self-assembling micelles that carry 

hydrophobic drugs in their core, shielded by a hydrophilic 

shell (often PEG) that prolongs circulation [31, 32].  

Another impactful trend is the co-delivery of multiple 

therapeutic agents using a single nanoparticle platform. By 

encapsulating drug combinations, nanocarriers can ensure 

that synergistic agents (e.g. a chemotherapeutic and an 

MDR inhibitor, or two chemo drugs with complementary 

actions) are delivered to the tumor at the same time and at 

optimal ratios [33]. This co-loading strategy can enhance 
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therapeutic efficacy and help prevent drug resistance. For 

instance, polymeric NPs co-encapsulating doxorubicin and 

an siRNA against drug-resistance genes have shown the 

ability to reverse tumor resistance and induce tumor 

regressions in models [34, 35]. Similarly, 5-FU has been 

co-delivered with other drugs like paclitaxel or everolimus 

in nanoparticle formulations to yield higher anticancer 

effects than either alone [33, 36]. Mohammadi Arvejeh et 

al. (2025) recently developed an injectable hydrogel 

embedding mesoporous silica nanoparticles for co-

delivery of 5-FU and the mTOR inhibitor everolimus, 

achieving synergistic inhibition of breast tumors in mice 

[37]. The nanocomposite hydrogel provided localized, pH-

responsive release of both drugs and significantly reduced 

tumor size and lung metastases compared to monotherapy 

controls [38]. Such combination nanotherapies illustrate 

the potential of polymeric systems to not only target 

tumors but also intelligently deploy multiple interventions 

against cancer cells. Additionally, epigenetic modulators 

like miRNAs are increasingly recognized as drivers of 

resistance. For example, miRNA-221-5p has been shown 

to regulate epigenetic pathways that promote 

chemoresistance in ovarian cancer, representing a 

promising target for RNA-loaded or miRNA-responsive 

nanocarrier systems [39]. Recent work demonstrates that 

inhibiting CHK1 in ovarian cancer induces PARylation and 

NAD⁺ depletion, and when combined with PARG 

inhibition, it leads to replication catastrophe and 

metabolic stress, offering a novel approach to overcome 

drug resistance via synthetic lethality [40]. 

Polymeric nanoparticles have progressed from benchtop 

research to clinical evaluation. Several polymer-based 

nanomedicines are in clinical trials, and a few have 

attained regulatory approval for cancer therapy. One 

example is CRLX101, a cyclodextrin-polymer conjugate 

carrying camptothecin, which advanced to phase II trials 

in solid tumors [41,42]. Polymeric micelle formulations of 

paclitaxel (e.g. Genexol-PM) have been approved in some 

regions, demonstrating reduced toxicities versus 

conventional cremophor-formulated paclitaxel [43]. These 

successes underscore that polymeric NP systems can be 

manufactured under Good Manufacturing Practice and 

meet safety criteria for human use. Nonetheless, 

challenges remain in ensuring batch-to-batch consistency, 

scalability of production, and thorough characterization of 

these complex nanomaterials [44]. The pharmacokinetics 

and biodistribution of polymeric NPs can also be 

influenced by their physicochemical properties (size, 

charge, surface hydrophilicity), so careful optimization is 

required to strike a balance between stability in blood and 

efficient payload release in targets [45]. 

In summary, polymeric nanoparticles provide a versatile 

platform for targeted drug delivery. By appropriate 

selection or design of polymers, surface functionalization, 

and incorporation of stimulus-responsive features, these 

nanocarriers achieve improved tumor targeting and 

therapeutic outcomes in preclinical models. The next 

sections delve deeper into specific applications, notably 

the delivery of fluoropyrimidine chemotherapeutics and 

the use of pH-sensitive formulations, which exemplify the 

translational progress in this field. 

Fluoropyrimidine Delivery Systems: 

Nanocarriers for 5-FU and Analogues 

Fluoropyrimidines such as 5-fluorouracil (5-FU) and its 

prodrugs (capecitabine, tegafur) are mainstay treatments 

for malignancies including colorectal, gastrointestinal, 

breast, and head-neck cancers. However, 5-FU has 

notoriously problematic pharmacokinetics: it has a very 

short plasma half-life (10–20 minutes), is rapidly 

metabolized, and can cause severe off-target toxicities in 

the gastrointestinal tract and bone marrow [46,47]. 

Traditional 5-FU regimens often require continuous 

infusion or high-dose bolus administration, which increase 

the risk of mucositis, myelosuppression, and hand-foot 

syndrome [46,47]. Nanotechnology offers strategies to 

reformulate fluoropyrimidines, improving drug targeting 

tumors and reducing systemic exposure [48]. 

Multiple nano-delivery systems for 5-FU have been 

explored in recent years [46]. These include lipid-based 

nanoparticles (e.g. liposomes, solid lipid NPs), polymeric 

NPs (both non-responsive and stimulus-responsive types), 

inorganic nanocarriers (such as mesoporous silica or gold 

nanoparticles), and nanoscale polymer-drug conjugates 

[49,50]. Each approach aims to overcome the limitations 

of 5-FU by increasing its stability and concentrating its 

action in cancer cells. For instance, 5-FU encapsulated in 

PEGylated liposomes has shown prolonged circulation and 

enhanced tumor uptake in animal models, translating to 

greater antitumor efficacy than free 5-FU [51]. Polymeric 

NPs made of PLGA or poly(alkylcyanoacrylate) have been 

loaded with 5-FU to achieve sustained drug release over 

several days, maintaining therapeutic drug levels in 

tumors while sparing normal tissues [52, 53]. Notably, 

some polymeric formulations are designed to release 5-FU 

preferentially in the acidic microenvironment of tumors or 

inside cancer cells’ endosomes (pH ~5–6), thus 

minimizing drug release in blood (pH 7.4) [26]. 

One innovative formulation reported in 2024 is thiolated 

chitosan nanoparticles modified for active targeting of 5-

FU to cancer cells [54]. Anjum et al. synthesized chitosan 

NPs crosslinked with a thiol reagent to improve their 

mucoadhesiveness and stability, then coated the NPs with 

hyaluronic acid (HA) to target CD44, a receptor 

overexpressed on many cancer cells [54]. The resulting 

HA-coated 5-FU nanoparticles had a sub-300 nm size and 

positive zeta potential, facilitating efficient uptake by 

CD44+ triple-negative breast cancer cells while sparing 

normal cells [55]. In vitro, these targeted NPs 

demonstrated significantly higher cytotoxicity against 

breast cancer cells compared to free 5-FU, owing to 

enhanced cellular internalization [56, 57]. They also 

exhibited a controlled release profile (following diffusion-

controlled kinetics) that prolonged drug action [58, 59]. 

This design, combining a biodegradable polymer 

(chitosan), a targeting ligand (HA), and thiol-mediated 

mucoadhesion, exemplifies the sophisticated 

multifunctional nanoparticles now being developed for 
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fluoropyrimidine delivery. Such systems aim to increase 

tumor-specific drug delivery and reduce the dose of 5-FU 

needed, thereby mitigating side effects [60, 61]. 

Another area of progress is colon-targeted delivery of 5-

FU for colorectal cancer therapy. Because 5-FU causes 

dose-limiting GI toxicity when given systemically, 

formulating it for local release in the colon can improve 

efficacy against colonic tumors while lowering systemic 

exposure [62]. Researchers have designed pH-responsive 

oral formulations that protect 5-FU as it passes through 

the stomach and small intestine, then release it upon 

reaching the higher pH environment of the colon [63]. For 

example, a 2023 study utilized cross-linked mastic gum as 

an enteric matrix for 5-FU, achieving significant drug 

release only at colonic pH and demonstrating enhanced 

tumor suppression in a mouse colon cancer model [64]. 

Similarly, pH-sensitive polymer coatings (like Eudragit S, 

which dissolves at pH > 7) have been applied to 5-FU-

loaded nanoparticles or tablets to selectively deliver the 

drug to the distal gut [65]. These strategies increase local 

drug concentration at the tumor site in the colon, 

improving therapeutic outcomes in preclinical studies of 

colorectal cancer while causing fewer systemic toxic 

effects [66]. 

Co-delivery strategies are also being pursued to enhance 

the efficacy of 5-FU. One approach is combining 5-FU with 

agents that modulate molecular pathways in cancer cells. 

A recent example is the co-encapsulation of 5-FU with 

small interfering RNAs (siRNA) or microRNA mimics that 

target oncogenes [67]. Gao et al. (2022) developed a layer-

by-layer liposomal system carrying 5-FU along with siRNA 

against KRAS and a tumor-suppressor miRNA, aiming to 

tackle colorectal cancer on multiple fronts [68, 69]. The 

multilayer liposomes delivered their cargo preferentially 

to colorectal tumor tissues in mice, resulting in marked 

tumor growth inhibition by synergistically silencing 

oncogenic KRAS and exerting 5-FU’s cytotoxic effects [70]. 

Another example is co-delivery of 5-FU with everolimus 

(an mTOR inhibitor) in the chitosan–silica nanohydrogel 

mentioned earlier [71]. By simultaneously blocking the 

mTOR pathway and incorporating 5-FU’s antimetabolite 

action, the combination induced higher cancer cell 

apoptosis and tumor regression than either agent alone 

[72–74]. These combination nanoparticle therapies 

demonstrate how nanocarriers can coordinate multiple 

therapeutic modalities, an especially valuable feature for 

managing cancers that rapidly develop drug resistance 

when single agents are used [75, 76]. Recently, 

lymphoblastic leukemia-derived sequence-1 (LYL1) has 

emerged as a novel oncogenic driver associated with 

ovarian cancer progression and metastasis, highlighting a 

potential molecular target for RNAi or gene-editing-based 

nanocarrier development [77]. 

Collectively, nano-delivery systems for fluoropyrimidines 

are addressing the classic drawbacks of 5-FU 

chemotherapy. Through encapsulation and controlled 

release, they prolong the drug’s presence in the 

therapeutic window and reduce peak systemic 

concentrations that cause toxicity. Tumor-targeted 

delivery via passive and active mechanisms increases drug 

accumulation at the tumor site, enhancing anti-tumor 

efficacy even in 5-FU–resistant cancer cell lines [78]. Many 

5-FU nanocarriers also allow for dose reductions while 

achieving the same or greater tumor suppression, as the 

nanoformulation’s efficiency compensates for lower drug 

amounts [79, 80]. This could translate to fewer side effects 

for patients. Indeed, initial animal toxicology studies of 5-

FU nanoparticles show reduced bone marrow and GI 

toxicity compared to equivalent doses of free 5-FU [81, 

82]. Some formulations, such as SillaJen’sPexa-Vec (an 

oncolytic vaccinia virus delivering a GM-CSF gene 

alongside a suicide gene to complement 5-FU therapy), are 

even entering clinical trials, reflecting a convergence of 

viral and nanoparticle delivery approaches to maximize 5-

FU’s therapeutic benefit [83]. The use of viral vectors to 

deliver immune-modulating cytokines such as interleukin-

2 has shown considerable promise in enhancing anti-

tumor immunity. Notably, recent studies demonstrate that 

engineered viral platforms can sustainably express IL-2 

within the tumor microenvironment, promoting cytotoxic 

T-cell activation and improving immunotherapy outcomes 

[84, 85]. While no 5-FU nanoformulation has yet achieved 

FDA approval, the pipeline is rich with candidates, 

indicating that fluoropyrimidine chemotherapy may soon 

be administered in smarter, safer ways thanks to 

nanotechnology. 

pH-Sensitive and Stimuli-Responsive Delivery 

Systems 

One of the most exciting areas in targeted drug delivery is 

the development of stimuli-responsivenanocarriers, 

systems that remain inert during circulation but respond 

to specific triggers in the target tissue to release their 

payload. Among these, pH-sensitive delivery systems have 

garnered particular interest in cancer therapy. Solid 

tumors typically exhibit an acidic microenvironment (pH 

~6.5–7.0 in interstitial fluid) due to hypoxia and high 

glycolytic activity, in contrast to normal blood and tissue 

pH of ~7.4 [26,86]. Furthermore, within tumor cells, endo-

lysosomal compartments are even more acidic (pH 5–6). 

pH-responsive nanocarriers exploit these differences: they 

are engineered to be stable at physiological pH but to 

undergo physicochemical changes in acidic conditions that 

trigger drug release [87, 88]. 

Several mechanisms can impart pH sensitivity to a 

nanocarrier. One approach is incorporating acid-labile 

bonds (such as hydrazone, Schiff-base, or cis-aconityl 

linkages) that cleave in acidic environments. For example, 

doxorubicin has been conjugated to polymers via 

hydrazone bonds that remain intact at pH 7.4 but 

hydrolyze at pH 5–6, ensuring the drug is released 

predominantly in acidic endosomes of cancer cells [26,89]. 

Another strategy is using pH-responsive polymer coatings 

that swell or solubilize in acidic pH. Polymers containing 

ionizable groups (like poly(β-amino esters), or 

polyhistidine) can be solid and collapse at neutral pH, but 

protonation in an acidic milieu causes them to become 

hydrophilic or disrupt intermolecular interactions, leading 
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to nanoparticle swelling and drug diffusion out [87,89]. 

For instance, poly(L-histidine)-based micelles will 

disassemble as the imidazole groups protonate below 

pH 6.5, releasing the drug load [90]. Similarly, Eudragit or 

poly(ortho ester) coatings can be applied to NP surfaces to 

prevent drug leakage at pH 7.4, then degrade and open up 

in acidic conditions [91]. Additionally, rationally designed 

small molecules such as benzofuran-piperazine 

derivatives have exhibited potent anticancer activity and 

represent attractive candidates for encapsulation in 

polymeric or lipid-based nanoparticles to enhance tumor-

targeted bioavailability and minimize systemic exposure  

[92]. 

Physical dissociation of nanoparticles in low pH is a 

commonly employed design. In one system, polymeric 

micelles constructed from block copolymers were stable 

in blood, but upon entering the acidic tumor tissue, the 

increased protonation caused electrostatic repulsion that 

burst the micelles, dumping the drug locally [93]. This 

“pH-triggered explosion” effectively concentrates drug 

release where it is needed.  By leveraging the pH gradients 

between healthy and tumor tissue (as well as between 

extracellular and intracellular compartments), such 

systems significantly enhance the precision of drug 

deployment. 

Beyond pH, other stimuli have been harnessed in 

nanocarrier design. Enzyme-responsive nanoparticles 

capitalize on overexpressed enzymes in the tumor milieu 

(e.g. matrix metalloproteinases, cathepsins) to cleave 

peptide linkers and release drugs at the tumor site [94,95]. 

Redox-responsive carriers use disulfide bonds that break 

in the reducing environment of the cytosol (high 

glutathione levels in cancer cells), triggering intracellular 

drug release [96]. Thermo-responsive liposomes (e.g. low-

temp sensitive liposomes) can release contents upon mild 

hyperthermia (~42 °C) applied to tumor regions. Magnetic 

and ultrasound-triggered nanocarriers are also being 

investigated: for example, magnetic nanoparticles that 

heat up under an alternating magnetic field to induce drug 

release, or acoustically sensitive liposomes that rupture 

upon ultrasound exposure [97,98]. While these external 

stimuli systems require specialized equipment, pH and 

enzyme triggers are autonomous and take advantage of 

intrinsic tumor characteristics. 

A concrete example of a pH-sensitive system is the 

“nanogel” – a hydrogel nanoparticle that can load drugs 

and then shrink or swell in response to pH changes. 

Nanogels made of crosslinked polymers like poly(N-

isopropylacrylamide-co-acrylic acid) remain collapsed at 

bloodstream pH, but in acidic tissue they absorb water and 

expand, releasing the encapsulated drug [99]. Importantly, 

by integrating targeting ligands into such nanogels, 

researchers have achieved dual-function systems that first 

home to cancer cells (via ligand-receptor binding) and 

then unload the drug intracellularly upon sensing the low 

pH in endosomes(100). This multi-stimuli approach was 

demonstrated by a nanogel that responded to both 

temperature and pH, the polymer backbone provided 

temperature sensitivity, and pendant catechol groups 

were cleaved in acidic conditions, resulting in highly 

controlled drug release with minimal premature leakage 

[101,102]. 

The clinical relevance of pH-sensitive delivery is 

exemplified by formulations aiming at improved 

chemotherapy for solid tumors. Doxorubicin encapsulated 

in pH-responsive polymeric micelles (known as pmPDOX) 

showed markedly enhanced tumor penetration and 

antitumor activity in models of metastatic cancer, versus 

non-pH-responsive liposomal doxorubicin [103]. Another 

example is a pH-activated polymer-drug conjugate of 

paclitaxel: it remained inactive in circulation, but upon 

accumulating in the acidic tumor, the hydrazone linkers 

hydrolyzed to release active paclitaxel, yielding greater 

tumor growth inhibition in mice and reduced systemic 

toxicity compared to standard paclitaxel [104]. Some of 

these pH-sensitive systems have entered early-phase 

clinical trials, particularly in the form of polymeric 

micelles or polymer conjugates, and initial results indicate 

favorable safety and drug release profiles in patients with 

advanced tumors [105].Among recent developments, the 

nanoscale polymeric formulation CF10 has demonstrated 

enhanced therapeutic efficacy and reduced systemic 

toxicity in a preclinical rat model of colorectal cancer liver 

metastasis, highlighting its potential as a next-generation 

fluoropyrimidine delivery platform [106–108]. 

It’s worth noting that stimulus-responsive delivery is not 

limited to cancer. Similar principles are being applied to 

inflammatory diseases (where inflamed tissue can be 

slightly acidic and rich in proteases) and infection sites 

(some bacteria create acidic niches) [109,110]. However, 

oncology remains the primary focus, given the pressing 

need to target chemotherapeutics more effectively.Overall, 

pH-sensitive and other stimuli-responsive nanocarriers 

represent a leap forward in the “intelligence” of drug 

delivery systems. By programming environmental 

responsiveness into the carrier, these systems act almost 

like a smart device, carrying the drug through the body, 

sensing when they have arrived at the target, and then 

executing the drug release precisely at that site [111]. This 

level of control can drastically improve therapeutic 

outcomes, as evidenced by higher response rates and 

complete tumor regressions in some preclinical models 

using smart nanoparticles [112]. As materials science and 

bioengineering continue to innovate on stimulus-sensitive 

polymers, we anticipate even more refined control 

mechanisms (for example, Boolean logic gates that require 

multiple stimuli concurrently) that could further minimize 

off-target effects [113,114]. The challenge moving forward 

will be translating these complex systems into 

manufacturable, regulatory-approved products. Ensuring 

stability, reproducibility, and safety of stimuli-responsive 

nanocarriers in humans will be paramount. Nonetheless, 

the progress to date clearly indicates that in situ drug 

activation via tumor-specific triggers can be a game-

changer in cancer therapy, aligning treatment potency 

where it’s needed and sparing healthy cells [115,116]. 
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Clinical Translation and Outlook 

The translational pathway for novel nanomedicines 

involves demonstrating advantages in preclinical efficacy, 

acceptable safety profiles, and scalable manufacturing. 

Many of the nanoscale delivery systems discussed have 

shown striking improvements in therapeutic index in 

animal models. For instance, 5-FU nanocarriers achieved 

equivalent tumor suppression at a fraction of the dose 

required for free 5-FU, with reduced toxicity [117]. pH-

sensitive doxorubicin micelles eradicated tumors in mice 

that were resistant to standard chemotherapy [26]. These 

encouraging results have propelled several candidates 

into clinical trials. It is notable that the first FDA-approved 

nanodrugs (e.g. liposomal doxorubicin, albumin-bound 

paclitaxel) provided proof-of-concept that nanotechnology 

can improve patient outcomes by reducing toxicity 

[118,119]. Building on that foundation, polymeric and 

stimuli-responsive systems are now vying to be the next 

generation of approved nanotherapies. 

One important consideration is safety and immunogenicity 

of nanoparticle carriers. Polymeric NPs are generally 

designed from biocompatible materials that degrade into 

nontoxic byproducts (e.g. PLGA degrades to lactic and 

glycolic acid, which enter metabolic pathways) [120]. Still, 

careful toxicology studies are needed to ensure no 

unexpected organ accumulation or immune reactions 

[121]. The surface properties of NPs strongly influence 

their interactions with the immune system. “Stealth” NPs 

coated with PEG tend to evade rapid clearance by 

phagocytes, prolonging circulation, but repeated dosing of 

PEGylated NPs can sometimes induce anti-PEG antibodies. 

So far, most polymeric NP systems have shown acceptable 

immunological profiles in early studies, but ongoing 

vigilance is warranted [122,123]. Drug-induced 

hypersensitivity reactions, such as DRESS syndrome 

associated with sulfasalazine, underscore the critical need 

for designing delivery systems that minimize systemic 

immunogenicity and off-target exposure [124–126]. In 

addition, immune evasion mechanisms, particularly in 

tumors exhibiting high cellular plasticity such as non-

small cell lung cancer, further contribute to therapeutic 

resistance. Recent evidence suggests that T and NK cell 

escape plays a central role in immunotherapy failure, 

necessitating delivery strategies that also engage the 

tumor immune microenvironment  [127]. 

Another translational hurdle is scalable manufacturing 

and characterization. Unlike small molecules, 

nanoparticles are complex heterogeneous structures. 

Batch consistency must be rigorously controlled for 

particle size, drug loading, release rate, and purity (e.g. 

removal of free drug or residual solvents). Advances in 

microfluidic synthesis and automated nanoparticle 

production are helping achieve more uniform batches 

[128]. Regulatory agencies have also provided guidance on 

characterization techniques (DLS for size distribution, 

electron microscopy for morphology, HPLC for drug 

content, etc.). Formulation stability during storage is 

another issue, some nanoparticle formulations may 

aggregate or precipitate over time, necessitating 

lyophilized forms that can be reconstituted before use. 

Researchers have addressed this by developing 

lyoprotectant strategies and optimizing storage conditions 

(e.g. storing at 4 °C, protecting from light, etc.) [129]. 

Indeed, one of the polymeric micelle products in trials is 

supplied as a freeze-dried powder to ensure long shelf-life, 

with the end-user (pharmacist) rehydrating it in saline 

prior to administration [130]. 

From a clinical standpoint, the integration of 

nanomedicines into treatment regimens requires 

consideration of dosing, scheduling, and potential 

combination with other therapies. Because nanocarriers 

alter the pharmacokinetics of drugs, clinicians may need to 

adjust dosing schedules (for example, an NP providing 

sustained release might be given less frequently than the 

free drug) [131]. Moreover, nanoparticles often have 

different tissue distribution – for instance, they may 

penetrate tumors better but cross the blood-brain barrier 

poorly (or vice versa if designed for CNS targeting)(132). 

Understanding these differences is key to positioning 

nanomedicines appropriately. The good news is that 

several nanoformulations have entered oncology practice 

(e.g. liposomal irinotecan for pancreatic cancer, 

nanoparticle albumin paclitaxel for breast cancer), paving 

the way for acceptance of new nano-delivery systems by 

oncologists [133,134] Emerging molecular diagnostics are 

also shaping posttreatment strategies. For instance, HPV-

HR DNA testing has shown potential as a non-invasive 

alternative to PET/CT imaging for cancer surveillance, 

aiding timely therapeutic decisions [135,136]. Effective 

implementation of novel drug delivery systems in hospital 

settings also requires attention to patient-centered 

factors, including health literacy. A recent prospective 

pilot study emphasized the importance of health literacy 

screening in gynecologic oncology patients to improve 

therapeutic engagement and outcomes  [137]. 

Looking ahead, the field of targeted drug delivery is poised 

to intersect with other cutting-edge modalities. 

Combination of nanocarriers with immunotherapy is a 

promising frontier. For example, nanoparticle 

formulations that deliver a chemotherapeutic along with 

an immune adjuvant can not only kill tumor cells but also 

stimulate an anticancer immune response. Some 

researchers have loaded checkpoint blockade antibodies 

onto nanoparticles together with chemo drugs, creating a 

single platform that both debulks the tumor and 

modulates immune checkpoints in the tumor 

microenvironment. There is also interest in using 

nanoparticles to improve cell therapies: e.g. nanoparticle 

“backpacks” on T-cells that slowly release cytokines to 

enhance the T-cells’ activity once they reach the tumor.In 

addition to formulating nano-antibiotics that minimize 

resistance and systemic toxicity, hospital-based 

implementation must also address real-world challenges 

such as ineffective IV-to-oral transition protocols and 

treatment inconsistencies in infectious diseases. For 

instance, prospective evaluations from tertiary care 

settings have revealed substantial gaps in inpatient versus 

outpatient antibiotic strategies and highlighted 
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operational delays in oral conversion for eligible patients 

[138, 139]. Such findings underscore the necessity of 

aligning advanced drug delivery innovations with 

antimicrobial stewardship models supported by clinical 

pharmacists. 

Finally, cost and accessibility will influence the clinical 

uptake of these technologies. While nanoformulations can 

be more complex and expensive to produce than 

traditional drugs, their potential to improve outcomes 

(and possibly enable cures in cases where current therapy 

fails) can justify the investment [140]. Health-economic 

analyses are beginning to consider whether the reduced 

side-effect management costs and improved patient 

quality-of-life from nanomedicines offset their 

manufacturing costs. As more nanodrugs hopefully gain 

approval, competition and economies of scale may also 

drive costs down [141]. 

In conclusion, nanoscale and targeted drug delivery 

systems represent a transformative approach in 

pharmacotherapy. Polymeric nanoparticles, 

fluoropyrimidinenanoformulations, and pH-sensitive 

carriers have shown the ability to address long-standing 

challenges in chemotherapy by enhancing drug targeting 

and retention at disease sites. The clinical translation of 

these technologies is underway, supported by a strong 

foundation of preclinical evidence. Continued 

interdisciplinary collaboration among chemists, biologists, 

engineers, and clinicians will be essential to bring these 

sophisticated delivery systems from the laboratory to 

routine patient care. If successful, patients will experience 

more effective treatments with fewer side effects, fulfilling 

the promise of “right drug, right place, right time” that 

targeted drug delivery embodies. 

Conclusion 

Recent advances in nanotechnology have enabled the 

design of smart drug delivery systems that significantly 

improve the precision and efficacy of chemotherapy. 

Polymeric nanoparticles offer customizable platforms to 

carry and release therapeutics in a controlled manner, 

reducing toxicity and overcoming biological barriers. 

Fluoropyrimidine chemotherapies like 5-FU, which are 

limited by rapid clearance and systemic side effects, have 

been reformulated into nanoparticle systems that prolong 

drug circulation and selectively release drug at tumor sites 

– achieving better anti-cancer effects in preclinical models 

with lower toxicity [142, 143]. Stimuli-responsive 

nanocarriers, particularly those sensitive to pH, exemplify 

how the tumor microenvironment can be leveraged to 

trigger drug release exactly where needed [26]. These 

intelligent systems remain stable during blood transit and 

then unleash potent doses upon encountering the acidic or 

enzyme-rich conditions of tumors, thereby maximizing 

tumor cell kill while sparing healthy tissue. 

As evidenced by multiple candidates entering clinical 

trials, the field is moving steadily toward clinical 

implementation of these novel delivery strategies. The 

translation is supported by advances in manufacturing 

techniques and a deeper understanding of nano–bio 

interactions that inform safety evaluations. Early-phase 

trials of nanoparticle-based drugs have generally shown 

that these systems can be administered safely to patients, 

with pharmacokinetic profiles consistent with the long-

circulating, tumor-targeting behavior observed in animal 

studies [144]. Challenges remain, including ensuring 

regulatory compliance in production, managing potential 

immunogenicity of nanoparticle components, and 

educating clinicians about the unique handling and dosing 

of nanomedicines. However, the trajectory is clear: 

nanoscale targeted delivery is on the cusp of delivering 

tangible benefits to patients, making chemotherapy more 

effective and tolerable. 

In conclusion, the progress in polymeric nanoparticles, 

fluoropyrimidine nano-delivery, and pH-responsive 

systems heralds a new era of cancer therapy where 

treatment is not only defined by the drug’s potency but 

equally by the sophistication of its delivery. By refining 

how and where drugs act within the body, these 

technologies fulfill a central goal of precision medicine. 

Ongoing research and clinical collaboration will 

undoubtedly expand the repertoire of diseases that can be 

tackled by targeted nanomedicine, potentially extending 

beyond oncology to treat infections, metabolic conditions, 

and others with similar precision. The coming years are 

likely to witness some of these advanced drug delivery 

systems reaching regulatory approval and becoming part 

of standard therapeutic regimens, ultimately improving 

patient outcomes and quality of life. 
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