LIGHT CHAIN DEPOSITION DISEASE – A REVIEW
Rimmalapudi Kiranmai
Assistant Professor, Vishwanadha Institute of Pharmaceutical Sciences, Visakhapatnam.

Abstract
Light Chain Deposition Disease (LCDD) is a rare and serious disorder characterized by the deposition of monoclonal immunoglobulin light chains in various organs, leading to organ dysfunction. This abstract provides a concise overview of LCDD, emphasizing its clinical manifestations, pathological features, diagnostic methods, and treatment approaches. LCDD primarily affects the kidneys, heart, liver, and other organs, causing progressive damage due to the accumulation of abnormal light chains. The disease often presents with renal impairment, proteinuria, and systemic symptoms. Histopathological examination reveals characteristic amyloid-like deposits in affected tissues, distinguishing LCDD from other renal disorders. Diagnosis involves a combination of clinical evaluation, laboratory tests, imaging studies, and tissue biopsy. Immunofluorescence and electron microscopy are essential for confirming the presence of monoclonal light chain deposits. The identification of specific light chain types aids in determining the underlying plasma cell dyscrasia. Management of LCDD focuses on addressing the underlying plasma cell disorder through chemotherapy, immunomodulatory agents, or stem cell transplantation. Supportive measures such as renal replacement therapy and cardiac interventions may be necessary to manage organ-specific complications.

Keywords: LCDD, kidney disorders, nephropathy, immunoglobulin’s.

Introduction
Light chain deposition disorders (LCDD) are a group of rare conditions that involve the deposition of abnormal immunoglobulin light chains (kappa or lambda) in various organs and tissues of the body. These are associated with monoclonal gammapathies [1]. LCs are normally cleared by the kidneys, but in LCDD, the kidneys are almost affected and this often leads to kidney failure. Other types like LCHDD involves the deposition of both light chains and heavy chains in various tissues, including the kidney, this disorder is even rarer than LCDD.

Aetiology /causes
The underlying cause is unknown. Often associated with multiple myeloma [2], plasmacytoma, and lymphoproliferative disorders. To understand the specific cause of LCDD in an individual requires a comprehensive diagnostic evaluation. Monodonal Gammpathy, Excess Production of Abnormal Light Chains, Circulation and Deposition in LCDD, Formation of Deposits.

Epidemiology
The detailed epidemiological data may be limited. The incidence and prevalence of LCDD can vary across populations, and the rarity of the disease poses challenges in studying its epidemiology. LCDD often presents in adults, many cases diagnosed in individuals over the age of 40 or 50. Observed in both males and females but affects men 2.5 times more than women.

Pathogenesis
The main light chain structure in LCDD presumably dictates how the disease manifests in the body. Though κI–IV has been described the sequenced kappa light chains in LCDD are more likely to belong to the V-region subtype, of which VdV appears to be overrepresented [9]. The pathogenicity of these proteins has not been linked to any particular structural pattern or residue, but a number of recurring characteristics have been identified. Firstly, somatic mutations, not germline mutations, are the source of the amino acid substitutions. Secondly, the region that determines complementarity is where substitutions happen most frequently [8]. Third, hydrophobic residues are more likely to be presented by the mutations reported in both the kappa and light chains [10]. This could hinder protein-protein interactions and destabilize the protein, leading to protein deposition in tissues [11]. The murine serves as an
illustration of the inclination for aggregation of LCDD where light chain deposition was observed in the kidney of transfected mice using vectors that contained kappa light chain sequence from an individual with LCDD with the VκIV subtype [12]. Lastly, because some patients with LCDD have isolates of kappa light chains with mutations that produce new N-glycosylation sites, posttranslational modification can be linked to the creation of pathologic light chains. It’s possible that the new hydrophobic residues along with N-glycosylation sites will make it more likely for the light chains to accumulate in the affected tissues’ basement membranes [13]. The involvement of the mesangial cell is considered in the pathogenesis of LCDD [14].

Clinical features
This can occur in any organs. Mostly renal involvement is present with proteinuria and hematuria. Glomerulonephritis or ATN [3]. Renal failure occurs with comparable frequency regardless of the level of light chain excretion. Nodular sclerosing glomerulopathy by light microscopy, glomerular basement membranes (GBM) and tubular basement membranes (TBM) for a single light chain (LCDD) by immunofluorescence are the characteristic morphologic features of renal LCDD. Heart, liver, and other organs are less frequently involved [4]. Liver is the most frequent extra renal site in LCDD [5], patients may develop hepatic insufficiency and portal hypertension and hepatic failure. Heart enlargement, restrictive cardiomyopathy, and severe congestive heart failure [6]. Echocardiography and catheterization may reveal diastolic dysfunction and reduction in myocardial compliance similar to that found in cardiac amyloid [7]. It is thought that cardiac involvement translates into a worse outcome. However, there is lack of data to support this association. In lungs, parenchyma gets damaged, in few cases large airways may involve. Polyneuropathy. Deposits may occur along the nerve fibers and in the choroids plexus [8]. Cases of intracerebral amyloidomas and LCDD have been reported. Systemic symptoms like fatigue, weight loss and weakness. Nausea and vomiting, numbness, tingling or weakness in the extremities. Purpura (purplish discolorations).

Diagnosis
Laboratory tests may include:
1) Blood and Urine tests – serum protein electrophoresis and immunofixation electrophoresis to detect abnormal protein levels. -24-hour urine collection to assess the presence of abnormal proteins.
2) Biopsy - organ biopsy, often of the kidney or other affected organs, to confirm the presence of light chain deposits.
3) Imaging studies – like X-rays, CT scans or MRI may be used to assess the extent of organ involvement.
4) Renal Function Tests – Assessing kidney function is crucial, as LCDD often affects the kidneys.

Genetic Testing: in some cases, genetic testing may be performed to identify underlying conditions associated with LCDD.

The definitive diagnosis of LCDD requires histopathological examinations of biopsy samples, where characteristic Congo red staining can reveal the presence of amyloid deposits, immunohistochemistry and electron microscopy may also be used to identify the specific type of light chains involved(15)(16).

Treatment
Autologous stem cell transplant and bortezomib-based regimens appear to have reasonable safety and efficacy for this rare hematologic disorder, albeit some statistical and analytical limitations. Large multicenter retrospective and prospective studies are needed to better elucidate the role of various chemotherapy regimens as well as autologous stem cell transplant for patients with LCDD[17]. Steroids and melphalan, high-dose melphalan, are some of the treatment options [18].

Conclusion
Research on LCDD Is ongoing to better understand its pathogenesis, improve diagnostic methods, and develop more effective treatments. As with many rare diseases, collaboration among healthcare professionals, researchers, and patient advocacy groups is crucial to advance knowledge and enhance patient care.

Funding
No Funding

Acknowledgement
Not Declared

Inform Consent
Not Applicable

Ethical Statement
Not Applicable

Conflict of Interest
There is no conflict of interest

References
2) https://rarediseases.org/gard-rare-disease/light-chain-deposition-disease


