Innovations in Nanoscale Drug Delivery for Oncology: Polymeric, Fluoropyrimidine, And Ph-Responsive Approaches
Abstract
Nanoscale drug delivery systems have transformed the landscape of chemotherapy by enabling targeted, controlled release of therapeutics while minimizing systemic toxicity. This review focuses on recent advancesin polymeric nanoparticles and related nanocarriers for targeted drug delivery, including novel formulations for fluoropyrimidine chemotherapies and pH-sensitive delivery platforms. We discuss the design and engineering of polymeric nanoparticles that exploit the enhanced permeability and retention effect for passive tumor targeting and surface modifications for active targeting. Innovative strategies such as stimulus-responsive (especially pH-responsive) nanocarriers and co-delivery systems are highlighted for their ability to improve drug bioavailability and efficacy. Preclinical validation and emerging clinical trial data demonstrate improved therapeutic indices and reduced side effects for several nanomedicine candidates. Fluoropyrimidine-loaded nanocarriers show promise in overcoming 5-fluorouracil’s pharmacokinetic challenges, enabling sustained release and tumor-selective delivery. The review also addresses translational considerations, manufacturing, safety, and regulatory aspects, associated with bringing these nanotechnologies from bench to bedside.
Downloads
References
2. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther [Internet]. 2023 Nov 3 [cited 2025 Jun 14];8(1):418. Available from: https://www.nature.com/articles/s41392-023-01642-x
3. Chaudhari R, Patel V, Kumar A. Cutting-edge approaches for targeted drug delivery in breast cancer: beyond conventional therapies. Nanoscale Advances [Internet]. 2024 [cited 2025 Jun 14];6(9):2270–86. Available from: https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00086b
4. It may all come down to the mechanisms of nanoparticle delivery. Nat Rev Bioeng [Internet]. 2024 Mar [cited 2025 Jun 14];2(3):193–193. Available from: https://www.nature.com/articles/s44222-024-00165-6
5. Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med [Internet]. 2021 Aug 6 [cited 2025 Jun 14];11(8):771. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402171/
6. Kawish SM, Sharma S, Gupta P, Ahmad FJ, Iqbal M, Alshabrmi FM, et al. Nanoparticle-Based Drug Delivery Platform for Simultaneous Administration of Phytochemicals and Chemotherapeutics: Emerging Trends in Cancer Management. Particle & Particle Systems Characterization [Internet]. 2024 [cited 2025 Jun 14];41(12):2400049. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ppsc.202400049
7. Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose Response [Internet]. 2020 Jul 10 [cited 2025 Jun 14];18(3):1559325820936161. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357073/
8. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther [Internet]. 2023 Nov 3 [cited 2025 Jun 14];8(1):418. Available from: https://www.nature.com/articles/s41392-023-01642-x
9. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology [Internet]. 2024 Mar 1 [cited 2025 Jun 14];5:109–22. Available from: https://www.sciencedirect.com/science/article/pii/S2949723X23000533
10. Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol [Internet]. 2021 Feb 3 [cited 2025 Jun 14];12. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.601626/full
11. Contri RV, Gazzi RP, Pohlmann AR, Guterres SS, Frank LA. Drug Release from Pharmaceutical Nanocarriers. In: The ADME Encyclopedia [Internet]. Springer, Cham; 2022 [cited 2025 Jun 14]. p. 419–28. Available from: https://link.springer.com/rwe/10.1007/978-3-030-84860-6_107
12. 12. Soltani M, Souri M, Moradi Kashkooli F. Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors. Sci Rep [Internet]. 2021 Sep 29 [cited 2025 Jun 14];11(1):19350. Available from: https://www.nature.com/articles/s41598-021-98638-w
13. Bachta P, Jakhmola V, Nainwal N, Joshi P, Bahuguna R, Chaudhary M, et al. A comprehensive study on pH-sensitive nanoparticles for the efficient delivery of drugs. J Adv Biotechnol Exp Ther [Internet]. 2025 [cited 2025 Jun 14];8(2):200. Available from: https://www.ejmanager.com/fulltextpdf.php?mno=226368
14. Eltaib L. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication. Polymers [Internet]. 2025 Jan [cited 2025 Jun 14];17(7):833. Available from: https://www.mdpi.com/2073-4360/17/7/833
15. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther [Internet]. 2023 Nov 3 [cited 2025 Jun 14];8(1):418. Available from: https://www.nature.com/articles/s41392-023-01642-x
16. 16. Kang H, Rho S, Stiles WR, Hu S, Baek Y, Hwang DW, et al. Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Adv Healthc Mater. 2020 Jan;9(1):e1901223.
17. Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein J Nanotechnol [Internet]. 2023 Sep 4 [cited 2025 Jun 14];14:912–26. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494237/
18. Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, et al. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol [Internet]. 2022 Oct 7 [cited 2025 Jun 14];10. Available from: https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.1024143/full
19. Gonzalez T, Muminovic M, Nano O, Vulfovich M. Folate Receptor Alpha—A Novel Approach to Cancer Therapy. Int J Mol Sci [Internet]. 2024 Jan 15 [cited 2025 Jun 14];25(2):1046. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154542/
20. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther [Internet]. 2023 Nov 3 [cited 2025 Jun 14];8(1):418. Available from: https://www.nature.com/articles/s41392-023-01642-x
21. Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine [Internet]. 2015 Feb 2 [cited 2025 Jun 14];10:1001–18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324541/
22. Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Molecular Cancer [Internet]. 2023 Oct 9 [cited 2025 Jun 14];22(1):169. Available from: https://doi.org/10.1186/s12943-023-01865-0
23. Sah N, Shaik AA, Acharya G, Dunna M, Silwal A, Sharma S, et al. Receptor-Based Strategies for Overcoming Resistance in Cancer Therapy. Receptors [Internet]. 2024 Dec [cited 2025 Jun 15];3(4):425–43. Available from: https://www.mdpi.com/2813-2564/3/4/21
24. Yousefi Rizi HA, Hoon Shin D, Yousefi Rizi S. Polymeric Nanoparticles in Cancer Chemotherapy: A Narrative Review. Iran J Public Health [Internet]. 2022 Feb [cited 2025 Jun 14];51(2):226–39. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273492/
25. Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med [Internet]. 2021 Aug 6 [cited 2025 Jun 14];11(8):771. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402171/
26. Bachta P, Jakhmola V, Nainwal N, Joshi P, Bahuguna R, Chaudhary M, et al. A comprehensive study on pH-sensitive nanoparticles for the efficient delivery of drugs. J Adv Biotechnol Exp Ther [Internet]. 2025 [cited 2025 Jun 14];8(2):200. Available from: https://www.ejmanager.com/fulltextpdf.php?mno=226368
27. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Sig Transduct Target Ther [Internet]. 2018 Mar 16 [cited 2025 Jun 14];3(1):7. Available from: https://www.nature.com/articles/s41392-017-0004-3
28. Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, et al. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon [Internet]. 2024 Sep 30 [cited 2025 Jun 14];10(18):e38165. Available from: https://www.sciencedirect.com/science/article/pii/S2405844024141965
29. Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics [Internet]. 2021 Oct 14 [cited 2025 Jun 14];13(10):1686. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540112/
30. Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol [Internet]. 2021 Jun 25 [cited 2025 Jun 14];9. Available from: https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2021.707319/full
31. Sinha S, Tripathi AK, Pandey A, Naik P, Pandey A, Verma VS. Self-assembled PEGylated micelles for precise and targeted drug delivery: Current challenges and future directions. Biocatalysis and Agricultural Biotechnology [Internet]. 2024 Sep 1 [cited 2025 Jun 14];60:103296. Available from: https://www.sciencedirect.com/science/article/pii/S1878818124002809
32. Assiri AA, Glover K, Mishra D, Waite D, Vora LK, Thakur RRS. Block copolymer micelles as ocular drug delivery systems. Drug Discovery Today [Internet]. 2024 Aug 1 [cited 2025 Jun 14];29(8):104098. Available from: https://www.sciencedirect.com/science/article/pii/S135964462400223X
33. Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, et al. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem. 2023 Jan 15;246:114995.
34. Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, et al. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sciences [Internet]. 2022 Jun 1 [cited 2025 Jun 15];298:120463. Available from: https://www.sciencedirect.com/science/article/pii/S0024320522001631
35. Zhang C ge, Zhu W jing, Liu Y, Yuan Z qiang, Yang S di, Chen W liang, et al. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep [Internet]. 2016 Mar 31 [cited 2025 Jun 15];6(1):23859. Available from: https://www.nature.com/articles/srep23859
36. Arvejeh PM, Chermahini FA, Marincola F, Taheri F, Mirzaei SA, Alizadeh A, et al. A novel approach for the co-delivery of 5-fluorouracil and everolimus for breast cancer combination therapy: stimuli-responsive chitosan hydrogel embedded with mesoporous silica nanoparticles. Journal of Translational Medicine [Internet]. 2025 Mar 31 [cited 2025 Jun 15];23(1):382. Available from: https://doi.org/10.1186/s12967-025-06396-4
37. Arvejeh PM, Chermahini FA, Marincola F, Taheri F, Mirzaei SA, Alizadeh A, et al. A novel approach for the co-delivery of 5-fluorouracil and everolimus for breast cancer combination therapy: stimuli-responsive chitosan hydrogel embedded with mesoporous silica nanoparticles. Journal of Translational Medicine [Internet]. 2025 Mar 31 [cited 2025 Jun 15];23(1):382. Available from: https://doi.org/10.1186/s12967-025-06396-4
38. Zang C, Tian Y, Tang Y, Tang M, Yang D, Chen F, et al. Hydrogel-based platforms for site-specific doxorubicin release in cancer therapy. Journal of Translational Medicine [Internet]. 2024 Sep 30 [cited 2025 Jun 15];22(1):879. Available from: https://doi.org/10.1186/s12967-024-05490-3
39. Omy TR, Sah N, Reedy M, Acharya G, Palle K. Abstract 3090: miRNA-221-5p-mediated epigenetic regulation promotes chemoresistance and offers therapeutic potential in ovarian cancer. Cancer Research [Internet]. 2025 Apr 21 [cited 2025 Jun 15];85(8_Supplement_1):3090. Available from: https://doi.org/10.1158/1538-7445.AM2025-3090
40. Acharya G, Mani C, Sah N, Saamarthy K, Young R, Reedy MB, et al. CHK1 inhibitor induced PARylation by targeting PARG causes excessive replication and metabolic stress and overcomes chemoresistance in ovarian cancer. Cell Death Discov [Internet]. 2024 Jun 11 [cited 2025 Jun 15];10(1):278. Available from: https://www.nature.com/articles/s41420-024-02040-0
41. Serrano-Martínez A, Victoria-Montesinos D, García-Muñoz AM, Hernández-Sánchez P, Lucas-Abellán C, González-Louzao R. A Systematic Review of Clinical Trials on the Efficacy and Safety of CRLX101 Cyclodextrin-Based Nanomedicine for Cancer Treatment. Pharmaceutics [Internet]. 2023 Jun 26 [cited 2025 Jun 15];15(7):1824. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383811/
42. Phase II clinical trial evaluating CRLX101 in recurrent ovarian, tubal, and peritoneal cancer. - ASCO [Internet]. [cited 2025 Jun 15]. Available from: https://www.asco.org/abstracts-presentations/ABSTRACT133413
43. Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol [Internet]. 2014 Apr 25 [cited 2025 Jun 15];5. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2014.00077/full
44. Eltaib L. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication. Polymers [Internet]. 2025 Jan [cited 2025 Jun 15];17(7):833. Available from: https://www.mdpi.com/2073-4360/17/7/833
45. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) [Internet]. 2016 Mar [cited 2025 Jun 15];11(6):673–92. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561790/
46. Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, et al. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem. 2023 Jan 15;246:114995.
47. Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. International Journal of Molecular Sciences [Internet]. 2024 Jan [cited 2025 Jun 15];25(13):7470. Available from: https://www.mdpi.com/1422-0067/25/13/7470
48. Venturini J, Chakraborty A, Baysal MA, Tsimberidou AM. Developments in nanotechnology approaches for the treatment of solid tumors. Exp Hematol Oncol [Internet]. 2025 May 19 [cited 2025 Jun 15];14:76. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090476/
49. Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol [Internet]. 2021 Jun 25 [cited 2025 Jun 15];9:707319. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267819/
50. Cancer Nano-Therapies in the Clinic and Clinical Trials - NCI [Internet]. 2017 [cited 2025 Jun 15]. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments
51. Udofot O, Affram K, Smith T, Tshabe B, Krishnan S, Sachdeva M, et al. Pharmacokinetic, biodistribution and therapeutic efficacy of 5-fluorouracil-loaded pH-sensitive PEGylated liposomal nanoparticles in HCT-116 tumor bearing mouse. J Nat Sci [Internet]. 2016 [cited 2025 Jun 15];2(1):e171. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869888/
52. Omidian H, Wilson RL. PLGA Implants for Controlled Drug Delivery and Regenerative Medicine: Advances, Challenges, and Clinical Potential. Pharmaceuticals [Internet]. 2025 May [cited 2025 Jun 15];18(5):631. Available from: https://www.mdpi.com/1424-8247/18/5/631
53. Haggag YA, Osman MA, El-Gizawy SA, Goda AE, Shamloula MM, Faheem AM, et al. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomedicine & Pharmacotherapy [Internet]. 2018 Sep 1 [cited 2025 Jun 15];105:215–24. Available from: https://www.sciencedirect.com/science/article/pii/S0753332218322662
54. Anjum S, Naseer F, Ahmad T, Jahan F, Qadir H, Gul R, et al. Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Sci Rep [Internet]. 2024 May 19 [cited 2025 Jun 15];14(1):11431. Available from: https://www.nature.com/articles/s41598-024-55900-1
55. Anjum S, Naseer F, Ahmad T, Jahan F, Qadir H, Gul R, et al. Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Sci Rep [Internet]. 2024 May 19 [cited 2025 Jun 15];14:11431. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102914/
56. Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of Hematology & Oncology [Internet]. 2022 Sep 12 [cited 2025 Jun 15];15(1):132. Available from: https://doi.org/10.1186/s13045-022-01320-5
57. Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, et al. Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget [Internet]. 2016 Nov 8 [cited 2025 Jun 15];7(48):79670–87. Available from: https://www.oncotarget.com/article/13216/text/
58. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon [Internet]. 2022 Jan 1 [cited 2025 Jun 15];8(1):e08674. Available from: https://www.sciencedirect.com/science/article/pii/S2405844021027778
59. Contri RV, Gazzi RP, Pohlmann AR, Guterres SS, Frank LA. Drug Release from Pharmaceutical Nanocarriers. In: The ADME Encyclopedia [Internet]. Springer, Cham; 2022 [cited 2025 Jun 15]. p. 419–28. Available from: https://link.springer.com/rwe/10.1007/978-3-030-84860-6_107
60. Mikušová V, Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci [Internet]. 2021 Sep 6 [cited 2025 Jun 15];22(17):9652. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431817/
61. Anjum S, Naseer F, Ahmad T, Jahan F, Qadir H, Gul R, et al. Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Sci Rep [Internet]. 2024 May 19 [cited 2025 Jun 15];14:11431. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102914/
62. Handali S, Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, et al. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomedicine & Pharmacotherapy [Internet]. 2018 Dec 1 [cited 2025 Jun 15];108:1259–73. Available from: https://www.sciencedirect.com/science/article/pii/S0753332218347590
63. Abosalha AKh, Islam P, Boyajian JL, Thareja R, Schaly S, Kassab A, et al. Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer. ACS Pharmacol Transl Sci [Internet]. 2024 Sep 13 [cited 2025 Jun 15];7(9):2612–20. Available from: https://doi.org/10.1021/acsptsci.4c00462
64. Hani U, Mahammed N, Reshma T, Talath S, Wali AF, Aljasser A, et al. Enhanced colon-targeted drug delivery through development of 5-fluorouracil-loaded cross-linked mastic gum nanoparticles. Sci Rep [Internet]. 2025 May 26 [cited 2025 Jun 15];15(1):18355. Available from: https://www.nature.com/articles/s41598-025-03533-3
65. Gvozdeva Y, Staynova R. pH-Dependent Drug Delivery Systems for Ulcerative Colitis Treatment. Pharmaceutics [Internet]. 2025 Feb 10 [cited 2025 Jun 15];17(2):226. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858926/
66. Bharathi Priya K, Kulathuran Pillai K, Nalini CN, Udhumansha U. Formulation and characterization of 5-fluorouracil and metformin biodegradable nanospheres for treating colon cancer. Future Journal of Pharmaceutical Sciences [Internet]. 2024 Oct 21 [cited 2025 Jun 15];10(1):145. Available from: https://doi.org/10.1186/s43094-024-00713-2
67. Martino E, D’Onofrio N, Anastasio C, Abate M, Zappavigna S, Caraglia M, et al. MicroRNA-nanoparticles against cancer: Opportunities and challenges for personalized medicine. Mol Ther Nucleic Acids [Internet]. 2023 Apr 4 [cited 2025 Jun 15];32:371–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148042/
68. Ahmad R, Singh JK, Wunnava A, Al‑Obeed O, Abdulla M, Srivastava SK. Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). International Journal of Molecular Medicine [Internet]. 2021 Mar 1 [cited 2025 Jun 15];47(3):1–1. Available from: https://www.spandidos-publications.com/10.3892/ijmm.2021.4847
69. Willems A, Panchy N, Hong T. Using Single-Cell RNA Sequencing and MicroRNA Targeting Data to Improve Colorectal Cancer Survival Prediction. Cells [Internet]. 2023 Jan 5 [cited 2025 Jun 15];12(2):228. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856396/
70. Xu J, Zhang G, Luo X, Wang D, Zhou W, Zhang Y, et al. Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts. Theranostics [Internet]. 2021 Jan 1 [cited 2025 Jun 15];11(5):2475–89. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797688/
71. Arvejeh PM, Chermahini FA, Marincola F, Taheri F, Mirzaei SA, Alizadeh A, et al. A novel approach for the co-delivery of 5-fluorouracil and everolimus for breast cancer combination therapy: stimuli-responsive chitosan hydrogel embedded with mesoporous silica nanoparticles. Journal of Translational Medicine [Internet]. 2025 Mar 31 [cited 2025 Jun 15];23(1):382. Available from: https://doi.org/10.1186/s12967-025-06396-4
72. Idris S, Refaat B, Almaimani RA, Ahmed HG, Ahmad J, Alhadrami M, et al. Enhanced in vitro tumoricidal effects of 5-Fluorouracil, thymoquinone, and active vitamin D3 triple therapy against colon cancer cells by attenuating the PI3K/AKT/mTOR pathway. Life Sciences [Internet]. 2022 May 1 [cited 2025 Jun 15];296:120442. Available from: https://www.sciencedirect.com/science/article/pii/S0024320522001424
73. Zhong J, Ding S, Zhang X, Di W, Wang X, Zhang H, et al. To Investigate the Occurrence and Development of Colorectal Cancer Based on the PI3K/AKT/mTOR Signaling Pathway. FBL [Internet]. 2023 Feb 24 [cited 2025 Jun 15];28(2):37. Available from: https://www.imrpress.com/journal/FBL/28/2/10.31083/j.fbl2802037
74. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell & Bioscience [Internet]. 2020 Mar 10 [cited 2025 Jun 15];10(1):31. Available from: https://doi.org/10.1186/s13578-020-00396-1
75. Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, et al. Multifunctional nanoparticle-mediated combining therapy for human diseases. Sig Transduct Target Ther [Internet]. 2024 Jan 1 [cited 2025 Jun 15];9(1):1. Available from: https://www.nature.com/articles/s41392-023-01668-1
76. Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – strategies and perspectives. J Control Release [Internet]. 2016 Oct 28 [cited 2025 Jun 15];240:489–503. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064882/
77. Sah N, Peddibhotla S, Richardson B, Luna P, Bansal NA, Mani C, et al. Abstract A084: Oncogenic role for upregulated lymphoblastic leukemia derived sequence-1 in the progression of ovarian cancer and its metastasis. Cancer Epidemiology, Biomarkers & Prevention [Internet]. 2023 Jan 1 [cited 2025 Jun 15];32(1_Supplement):A084. Available from: https://doi.org/10.1158/1538-7755.DISP22-A084
78. Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, et al. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem. 2023 Jan 15;246:114995.
79. Haggag YA, Osman MA, El-Gizawy SA, Goda AE, Shamloula MM, Faheem AM, et al. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomedicine & Pharmacotherapy [Internet]. 2018 Sep 1 [cited 2025 Jun 15];105:215–24. Available from: https://www.sciencedirect.com/science/article/pii/S0753332218322662
80. Anjum S, Naseer F, Ahmad T, Jahan F, Qadir H, Gul R, et al. Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Sci Rep [Internet]. 2024 May 19 [cited 2025 Jun 15];14(1):11431. Available from: https://www.nature.com/articles/s41598-024-55900-1
81. Furlan Freguia C, Kaleko M. 1881PD - Oral intestinal alkaline phosphatase improves efficacy of 5-FU in a colorectal cancer mouse model. Annals of Oncology [Internet]. 2019 Oct 1 [cited 2025 Jun 15];30:v764. Available from: https://www.sciencedirect.com/science/article/pii/S0923753419600104
82. Yang Y, Zhang M, Zhang Y, Liu K, Lu C. 5-Fluorouracil Suppresses Colon Tumor through Activating the p53-Fas Pathway to Sensitize Myeloid-Derived Suppressor Cells to FasL+ Cytotoxic T Lymphocyte Cytotoxicity. Cancers (Basel) [Internet]. 2023 Mar 2 [cited 2025 Jun 15];15(5):1563. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001142/
83. Monge C, Xie C, Myojin Y, Coffman K, Hrones DM, Wang S, et al. Phase I/II study of PexaVec in combination with immune checkpoint inhibition in refractory metastatic colorectal cancer. J Immunother Cancer [Internet]. 2023 Feb 8 [cited 2025 Jun 15];11(2):e005640. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923269/
84. Wang H, Borlongan M, Hemminki A, Basnet S, Sah N, Kaufman HL, et al. Viral Vectors Expressing Interleukin 2 for Cancer Immunotherapy. Human Gene Therapy [Internet]. 2023 Sep [cited 2025 Jun 15];34(17–18):878–95. Available from: https://www.liebertpub.com/doi/full/10.1089/hum.2023.099
85. Nguyen HM, Sah N, Humphrey MRM, Rabkin SD, Saha D. Growth, Purification, and Titration of Oncolytic Herpes Simplex Virus. J Vis Exp [Internet]. 2021 May 13 [cited 2025 Jun 15];(171):10.3791/62677. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447238/
86. Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol [Internet]. 2022 Mar 22 [cited 2025 Jun 15];12. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.855019/full
87. Wang Y, Ukwattage V, Xiong Y, Such GK. Advancing endosomal escape of polymeric nanoparticles: towards improved intracellular delivery. Mater Horiz [Internet]. 2025 Jun 3 [cited 2025 Jun 15];12(11):3622–32. Available from: https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01781a
88. AlSawaftah NM, Awad NS, Pitt WG, Husseini GA. pH-Responsive Nanocarriers in Cancer Therapy. Polymers (Basel) [Internet]. 2022 Feb 26 [cited 2025 Jun 15];14(5):936. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912405/
89. Ow V, Lin Q, Min Wong JH, Sim B, Lin Tan Y, Leow Y, et al. Understanding the interplay between pH and charges for theranostic nanomaterials. 2025 Mar 24 [cited 2025 Jun 15]; Available from: https://pubs.rsc.org/en/content/articlehtml/2025/nr/d4nr03706e
90. Wang Y, Li P, Chen F, Jia L, Xu Q, Gai X, et al. A novel pH-sensitive carrier for the delivery of antitumor drugs: histidine-modified auricularia auricular polysaccharide nano-micelles. Sci Rep [Internet]. 2017 Jul 6 [cited 2025 Jun 15];7(1):4751. Available from: https://www.nature.com/articles/s41598-017-04428-8
91. Heikal EJ, Kaoud RM, Gad S, Mokhtar HI, Alattar A, Alshaman R, et al. Development of Novel pH-Sensitive Eudragit Coated Beads Containing Curcumin-Mesalamine Combination for Colon-Specific Drug Delivery. Gels [Internet]. 2023 Mar 23 [cited 2025 Jun 15];9(4):264. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137603/
92. Schumacher TJ, Sah N, Palle K, Rumbley J, Mereddy VR. Synthesis and biological evaluation of benzofuran piperazine derivatives as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters [Internet]. 2023 Sep 1 [cited 2025 Jun 15];93:129425. Available from: https://www.sciencedirect.com/science/article/pii/S0960894X23003037
93. Shen H, Zhang C, Zhou H, Li W, Tong Z, Wang C, et al. Coupling simulation and experimental study of drug loading and releasing behaviors in phytol-based micelles. Journal of Molecular Liquids [Internet]. 2024 Dec 15 [cited 2025 Jun 15];416:126225. Available from: https://www.sciencedirect.com/science/article/pii/S0167732224022840
94. Guo F, Du Y, Wang Y, Wang M, Wang L, Yu N, et al. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: A review. International Journal of Biological Macromolecules [Internet]. 2024 Feb 1 [cited 2025 Jun 15];257:128658. Available from: https://www.sciencedirect.com/science/article/pii/S0141813023055575
95. Li M, Zhao G, Su WK, Shuai Q. Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Front Chem [Internet]. 2020 Jul 30 [cited 2025 Jun 15];8:647. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406800/
96. Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Advanced Drug Delivery Reviews [Internet]. 2018 Jul 1 [cited 2025 Jun 15];132:16–32. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X18301108
97. Graham W, Torbett-Dougherty M, Islam A, Soleimani S, Bruce-Tagoe TA, Johnson JA. Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review. Nanomaterials [Internet]. 2025 Jan [cited 2025 Jun 15];15(4):285. Available from: https://www.mdpi.com/2079-4991/15/4/285
98. Shivanna AT, Dash BS, Chen JP. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. Micromachines [Internet]. 2022 Aug [cited 2025 Jun 15];13(8):1279. Available from: https://www.mdpi.com/2072-666X/13/8/1279
99. Li Z, Huang J, Wu J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater Sci [Internet]. 2021 Feb 9 [cited 2025 Jun 15];9(3):574–89. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/bm/d0bm01729a
100. Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol [Internet]. 2022 Sep 8 [cited 2025 Jun 15];13:874510. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9493206/
101. Benjamin SR, Sales AJM, Panicker PS, Bampoky NA, Nunes PIG. Chapter 7 - Nanogels in diagnostics: Sensing and imaging applications. In: Singh AK, Chaturvedi VK, Singh SK, Singh J, editors. Nanogels [Internet]. Woodhead Publishing; 2025 [cited 2025 Jun 15]. p. 191–221. (Woodhead Publishing Series in Biomaterials). Available from: https://www.sciencedirect.com/science/article/pii/B9780443300165000045
102. Korzhikov-Vlakh V, Tennikova T. Nanogels Capable of Triggered Release. In: Lavrentieva A, Pepelanova I, Seliktar D, editors. Tunable Hydrogels: Smart Materials for Biomedical Applications [Internet]. Cham: Springer International Publishing; 2021 [cited 2025 Jun 15]. p. 99–146. Available from: https://doi.org/10.1007/10_2021_163
103. Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol [Internet]. 2022 Mar 22 [cited 2025 Jun 15];12:855019. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980858/
104. Girase ML, Patil ,Priyanka Ganeshrao, and Ige PP. Polymer-drug conjugates as nanomedicine: a review. International Journal of Polymeric Materials and Polymeric Biomaterials [Internet]. 2020 Oct 12 [cited 2025 Jun 15];69(15):990–1014. Available from: https://doi.org/10.1080/00914037.2019.1655745
105. Shinn J, Kwon N, Lee SA, Lee Y. Smart pH-responsive nanomedicines for disease therapy. J Pharm Investig [Internet]. 2022 Jul 1 [cited 2025 Jun 15];52(4):427–41. Available from: https://doi.org/10.1007/s40005-022-00573-z
106. Okechukwu CC, Ma X, Sah N, Mani C, Palle K, Gmeiner WH. Enhanced Therapeutic Efficacy of the Nanoscale Fluoropyrimidine Polymer CF10 in a Rat Colorectal Cancer Liver Metastasis Model. Cancers [Internet]. 2024 Jan [cited 2025 Jun 15];16(7):1360. Available from: https://www.mdpi.com/2072-6694/16/7/1360
107. Sah N, Luna P, Mani C, Gmeiner W, Palle K. A Novel Fluoropyrimidine Drug to Treat Recalcitrant Colorectal Cancer. The Journal of Pharmacology and Experimental Therapeutics [Internet]. 2023 Jun 1 [cited 2025 Jun 15];385:441. Available from: https://www.sciencedirect.com/science/article/pii/S0022356524168796
108. Sah N, Luna P, Mani C, Gmeiner W, Palle K. Abstract 6178: A novel second-generation nano-fluoropyrimidine to treat metastatic colorectal cancer and overcome 5-fluorouracil resistance. Cancer Research [Internet]. 2023 Apr 4 [cited 2025 Jun 15];83(7_Supplement):6178. Available from: https://doi.org/10.1158/1538-7445.AM2023-6178
109. Haidari H, Kopecki Z, Sutton AT, Garg S, Cowin AJ, Vasilev K. pH-Responsive “Smart” Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds. Antibiotics (Basel) [Internet]. 2021 Jan 5 [cited 2025 Jun 15];10(1):49. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824857/
110. Xin Li J, Jiao Zhang M, Feng Shi J, Peng Wang S, Mei Zhong X, Han Wu Y, et al. pH-sensitive nano-polyelectrolyte complexes with arthritic macrophage-targeting delivery of triptolide. International Journal of Pharmaceutics [Internet]. 2023 Feb 5 [cited 2025 Jun 15];632:122572. Available from: https://www.sciencedirect.com/science/article/pii/S0378517322011279
111. Zhao H, Li Y, Chen J, Zhang J, Yang Q, Cui J, et al. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids and Surfaces B: Biointerfaces [Internet]. 2024 Feb 1 [cited 2025 Jun 15];234:113758. Available from: https://www.sciencedirect.com/science/article/pii/S092777652400016X
112. Kalsi S, Galenkamp AL, Singh R, Khosla AA, McGranaghan P, Cintolo-Gonzalez J. Talimogene laherparepvec (T-VEC) and Emerging Intralesional Immunotherapies for Metastatic Melanoma: A Review. Curr Oncol Rep [Internet]. 2024 Dec 1 [cited 2025 Jun 15];26(12):1651–63. Available from: https://doi.org/10.1007/s11912-024-01611-9
113. Luo C, He L, Chen F, Fu T, Zhang P, Xiao Z, et al. Stimulus-responsive nanomaterials containing logic gates for biomedical applications. Cell Reports Physical Science [Internet]. 2021 Feb 24 [cited 2025 Jun 15];2(2):100350. Available from: https://www.sciencedirect.com/science/article/pii/S2666386421000357
114. Huang Q, Ding C, Wang W, Yang L, Wu Y, Zeng W, et al. An “AND” logic gate–based supramolecular therapeutic nanoplatform for combatting drug-resistant non–small cell lung cancer. Science Advances [Internet]. 2024 Sep 25 [cited 2025 Jun 15];10(39):eadp9071. Available from: https://www.science.org/doi/10.1126/sciadv.adp9071
115. Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol [Internet]. 2018 Aug 13 [cited 2025 Jun 15];6:110. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104418/
116. Singh A, Amiji MM. Regulatory and Commercialization Challenges with Stimuli-responsive Nanomedicines. 2018 Jul 9 [cited 2025 Jun 15]; Available from: https://books.rsc.org/books/edited-volume/737/chapter/454373/Regulatory-and-Commercialization-Challenges-with
117. Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, et al. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem. 2023 Jan 15;246:114995.
118. Cancer Nano-Therapies in the Clinic and Clinical Trials - NCI [Internet]. 2017 [cited 2025 Jun 15]. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments
119. Current Nanomedicines for the Treatment of Cancer | Biopharma PEG [Internet]. [cited 2025 Jun 15]. Available from: https://www.biochempeg.com/article/188.html
120. Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J Funct Biomater [Internet]. 2019 Jan 8 [cited 2025 Jun 15];10(1):4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463038/
121. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology [Internet]. 2024 Mar 1 [cited 2025 Jun 15];5:109–22. Available from: https://www.sciencedirect.com/science/article/pii/S2949723X23000533
122. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev [Internet]. 2016 Apr 1 [cited 2025 Jun 15];99(Pt A):28–51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798869/
123. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials (Basel) [Internet]. 2020 Apr 20 [cited 2025 Jun 15];10(4):787. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221919/
124. Sah N, Ramaiah B, Koneri R. Sulfasalazine-induced drug rash with eosinophilia and systemic symptoms syndrome in a seronegative spondyloarthritis patient: A Case report. Indian Journal of Pharmacology [Internet]. 2021 Oct [cited 2025 Jun 15];53(5):391. Available from: https://journals.lww.com/iphr/fulltext/2021/53050/sulfasalazine_induced_drug_rash_with_eosinophilia.8.aspx
125. Sah N, Ramaiah B, Koneri R. The Pharmacist Role in Clinical Audit at an Indian Accredited Hospital: An Interventional Study. IJOPP [Internet]. 2019 Jun 1 [cited 2025 Jun 15];12(2):117–25. Available from: http://ijopp.org/article/662
126. Sah N, Ramaiah B, Abdulla, Gupta AK, Thomas SM. Noncompliance with Prescription-Writing Guidelines in an OutpatientDepartment of a Tertiary Care Hospital: A Prospective, Observational Study. rjps [Internet]. 2020 [cited 2025 Jun 15];10(1). Available from: https://rjps.journalgrid.com/view/article/rjps/284
127. Mestiri S, Sami A, Sah N, El-Ella DMA, Khatoon S, Shafique K, et al. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev [Internet]. 2025 Jan 25 [cited 2025 Jun 15];44(1):27. Available from: https://doi.org/10.1007/s10555-025-10244-8
128. Eltaib L. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication. Polymers [Internet]. 2025 Jan [cited 2025 Jun 15];17(7):833. Available from: https://www.mdpi.com/2073-4360/17/7/833
129. Protocols - Nanotechnology Characterization Lab - NCI [Internet]. 2022 [cited 2025 Jun 15]. Available from: https://www.cancer.gov/nano/research/ncl/protocols-capabilities
130. Ojha T, Hu Q, Colombo C, Wit J, van Geijn M, van Steenbergen MJ, et al. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol J [Internet]. 2021 Jun 1 [cited 2025 Jun 15];16(6):e2000212. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611944/
131. Abdifetah O, Na-Bangchang K.
Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review
. IJN [Internet]. 2019 Jul 23 [cited 2025 Jun 15];14:5659–77. Available from: https://www.dovepress.com/pharmacokinetic-studies-of-nanoparticles-as-a-delivery-system-for-conv-peer-reviewed-fulltext-article-IJN132. Ekhator C, Qureshi MQ, Zuberi AW, Hussain M, Sangroula N, Yerra S, et al. Advances and Opportunities in Nanoparticle Drug Delivery for Central Nervous System Disorders: A Review of Current Advances. Cureus [Internet]. [cited 2025 Jun 15];15(8):e44302. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463100/
133. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer Nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev [Internet]. 2014 Feb [cited 2025 Jun 15];66:2–25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219254/
134. Cancer Nano-Therapies in the Clinic and Clinical Trials - NCI [Internet]. 2017 [cited 2025 Jun 15]. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments
135. Huddleston C, Fakhreddine AB, Stroever S, Young R, Sah N, Palle K, et al. Abstract 1305: Comparison of HPV-DNA testing to PET-CT imaging as prognostic test following definitive treatment for cervical cancer: A retrospective proof-of-concept study. Cancer Research [Internet]. 2024 Mar 22 [cited 2025 Jun 15];84(6_Supplement):1305. Available from: https://doi.org/10.1158/1538-7445.AM2024-1305
136. Huddleston C, Mani C, Sah N, Courtney E, Reese K, Stroever S, et al. Evaluating Efficacy of Cervical HPV-HR DNA Testing as Alternative to PET/CT Imaging for Posttreatment Cancer Surveillance: Retrospective Proof-of-Concept Study. Cancer Epidemiology, Biomarkers & Prevention [Internet]. 2025 Jun 4 [cited 2025 Jun 15];OF1–5. Available from: https://doi.org/10.1158/1055-9965.EPI-24-1828
137. Richardson B, Anderson A, Lakey K, Hickham L, Sah N, Mani C, et al. Assessing the Need and Implementation of Health Literacy Testing for New Gynecologic Oncology Patients in West Texas: A Prospective Pilot Study. Texas Public Health Journal [Internet]. 2025 Jan 1 [cited 2025 Jun 15];77(1):18–24. Available from: https://research.ebsco.com/linkprocessor/plink?id=bd8e0ed4-6f24-37d8-b569-cdff4cff5da9
138. Varghese J, Sah N, Ramaiah B. PDG50 Obstacles in the IV to ORAL Antibiotic Shift for Eligible Patients at a Tertiary Care Hospital. Value in Health [Internet]. 2020 Dec 1 [cited 2025 Jun 15];23:S527. Available from: https://www.valueinhealthjournal.com/article/S1098-3015(20)32989-2/fulltext
139. Varghese J, Sah N, Thomas SM, Jose JC, Ramaiah B, Koneri R. PDG6 Clinical Evaluation of Skin and Soft Tissue Infections in Inpatient Versus Outpatient Setting at a Tertiary Care Hospital - a Prospective Study. Value in Health [Internet]. 2020 Dec 1 [cited 2025 Jun 15];23:S521–2. Available from: https://www.valueinhealthjournal.com/article/S1098-3015(20)32945-4/fulltext
140. Bosetti R, and Jones SL. Cost–Effectiveness of Nanomedicine: Estimating the Real Size of Nano-Costs. Nanomedicine [Internet]. 2019 Jun 1 [cited 2025 Jun 15];14(11):1367–70. Available from: https://doi.org/10.2217/nnm-2019-0130
141. Bosetti R, and Jones SL. Cost–Effectiveness of Nanomedicine: Estimating the Real Size of Nano-Costs. Nanomedicine [Internet]. 2019 Jun 1 [cited 2025 Jun 15];14(11):1367–70. Available from: https://doi.org/10.2217/nnm-2019-0130
142. Anjum S, Naseer F, Ahmad T, Jahan F, Qadir H, Gul R, et al. Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Sci Rep [Internet]. 2024 May 19 [cited 2025 Jun 15];14(1):11431. Available from: https://www.nature.com/articles/s41598-024-55900-1
143. Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, et al. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem. 2023 Jan 15;246:114995.
144. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther [Internet]. 2023 Nov 3 [cited 2025 Jun 15];8(1):418. Available from: https://www.nature.com/articles/s41392-023-01642-x

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.
pritampawara34@gmail.com


.